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In this paper we extend the analysis of optimal monetary policy rules in terms of
stability of the economy, started by Evans and Honkapohja (2003b), to the case of
heterogeneous learning. Following Giannitsarou (2003), we pose the question about
applicability of the representative agent hypothesis to learning. This hypothesis
was widely used in learning literature at early stages to demonstrate convergence
of an economic system under adaptive learning of agents to one of the rational ex-
pectations equilibria in the economy. Studying the validity of this hypothesis in
application to monetary policy rules is motivated by relatively recent appearance
of general conditions of stability under heterogeneous learning in the literature (see
Giannitsarou (2003) and Honkapohja and Mitra (2006)), indications that these con-
ditions do not always coincide with stability conditions under homogeneous learning,
and the fact that, to our knowledge, optimal monetary policy rules were not studied
methodologically for stability of the system under heterogeneous learning.

We test these monetary policy rules in the general setup of New Keynesian model
that is a working horse of monetary policy models today. It is of interest to see that
the results obtained by Evans and Honkapohja (2003b) for homogeneous learning
case are replicated for the case when the representative agent hypothesis is lifted.
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1 Introduction

Stabilization monetary policy design problem is very often studied in the New Key-
nesian model. Using the environment of this model, we may study different mon-
etary policy rules to find out which is more efficient in smoothing business cycles
fluctuations and also which monetary policy rule would not lead to indeterminacy of
equilibria in our model. For a comprehensive overview of various interest rate rules
in the New Keynesian model, one can address Woodford (2003). Also, a very often
cited work on monetary policy design is by Clarida, Gali and Gertler (1999, 2002).
Svensson (1999) gives a clear distinction between instrument and target rules and
implications of their use.

There has been analysis of the Taylor-type rules for indeterminacy. See, e.g.
Ben-Habib, Schmitt-Grohe and Uribe (2000) and Bullard and Mitra (2002). Ex-
ample of indeterminacy analysis of an optimization-based policy rule in the New
Keynesian model with learning is also given in Evans and Honkapohja (2003b).

A number of recent studies also consider the New Keynesian model environment
with adaptive learning of agents. Examples are works of Evans and Honkapohja
(2003a, 2003b) and Honkapohja and Mitra (2006) on stability of the model economy
under various policy rules. Evans and Honkapohja (2003a, 2003b) take up the issue
of stability under learning for optimal monetary policies (in economies with adaptive
learning).

It makes sense to study for efficiency such policy under which it is clear where
our economy ends up. Especially this is important in models where indeterminacy
is possible. We first need to try to find out where our economy may end up under
a given policy. Here, adaptive learning may serve as a selection device. Even if
our rational expectations (RE) model has a unique equilibrium, it is still of interest
to see if the RE hypothesis holds under learning, which is done by checking if our
model under learning converges to a given rational expectations equilibrium (REE).
In both cases, we will have to check certain stability conditions. After the study of

stability conditions, the next step would be to study policy rules for effectiveness
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and indeterminacy, assuming or making sure that the stability conditions on the
model structure are satisfied.

That is why, before we start with studying particular monetary policies for effi-
ciency (evaluating a particular type of policy: Taylor—rule, optimization-based rule
with or without commitment), we should take a general type of a linear policy feed-
back rule, plug it into our structural form of the New Keynesian model and obtain
some general linear reduced form (RF) of this model. All things being equal (the
same structural equations: Phillips and IS curves), we can have different RFs de-
pending on the policy rule used by the policy-maker. Hence, we obtain different
REEs and different stability results. Then we should study a given reduced form
for stability in order to see if a given REE equilibrium will be chosen. In this pa-
per, we will study stability of a New Keynesian model economy under the following
classification of policy rules introduced by Evans and Honkapohja (2003b).

Depending on the assumptions of the central bank about the expectations of the
private agents (firms, households), they divide all policy rules into fundamentals
based rules and expectations based rules. Fundamentals based rule is obtained if
the policy—maker assumes RE of private agents, while the expectations based rule
takes into account possibly non-rational expectations of agents (assuming that these
expectations are observable to the central bank).!

We consider stability question under assumption of heterogeneous learning of
agents. As has been shown in Giannitsarou (2003) and Honkapohja and Mitra
(2006), stability results may be different under homogeneous and heterogeneous
learning. Honkapohja and Mitra (2006) also demonstrate that stability may de-
pend on the interaction of structural heterogeneity and learning heterogeneity, and
Honkapohja and Mitra (2005) examine how structural heterogeneity in the New
Keynesian model may affect stability results under various types of policy rules.

It turns out that under fundamentals—based linear feedback policy rule (optimization—

based), learning in our model will never converge to the REE of the model. Evans

'We should note here that in Taylor-type rules the current value of interest rate depends on the
current values of inflation and output gap. In this paper we study stability under feedback rules
that are derived from the minimization problem, in particular, study their two categories, according
to Evans and Honkapohja (2003): fundamentals based and expectations based. Stability under
Taylor—type rules, which do not fall under this classification, will be studied later in a separate
work.



and Honkapohja (2003b) demonstrate this instability result for homogeneous recur-
sive least squares (RLS) or stochastic gradient (SG) learning?, while we obtain a
similar instability result for the three types of heterogeneous learning considered by
Giannitsarou (2003).

The other category of policy rules — expectations based rules — is meant to react
to agents’ expectations. Under certain conditions, we can have stability. Evans and
Honkapohja (2003b) obtain stability result for homogeneous RLS or SG learning,.
We obtain a stability result (with conditions on the model structure) for the case of
the three types of heterogeneous learning.

Originally, when heterogeneous learning in a general setup of structurally ho-
mogeneous stochastic models with adaptive learning was studied by Giannitsarou
(2003), the purpose of introducing heterogeneous learning of agents was to see if the
representative agents hypothesis influences stability results, i.e. if we can always
apply this hypothesis. For some cases, it is demonstrated, it does make sense to
consider heterogeneous setup. Our paper is about stability under monetary policy
rules, so, though we, in fact, prove that the representative agent hypothesis holds
true for the New Keynesian model, the accent of our paper is shifted away from
testing the importance (influence) of the representative agent hypothesis.

We, essentially, apply stability analysis of the model under heterogeneous learn-
ing in the same manner as stability analysis of the model under homogeneous learn-
ing is applied by Evans and Honkapohja (2003b). They study stability conditions
under monetary policy rules for the case of homogeneous RLS or SG learning. Their
major input is (both for one-sided learning and two-sided learning) to have shown
that under fundamentals based rules the REE of the model is always unstable, while
under the expectations based rule there always stability. In the two cases the re-
duced form of the model is different, which has as a consequence the difference in

the stability results. So, the policy implication of such a stability analysis is that,

2Honkapohja and Mitra (2006) and we in this paper consider two possible algorithms used
to reflect bounded rationality of agents: RLS and SG learning algorithms (which are examples
of econometric learning). Their description can be found, e.g., in Evans and Honkapohja (2001),
Honkapohja and Mitra (2006), Giannitsarou (2003), Evans, Honkapohja and Williams (2005). Both
are used by agents to update the estimates of the model parameters. Essentially, the difference
is as follows. RLS algorithm has two updating equation: one—for updating parameters entering
the forecast functions, the other—for updating the second moments matrix (of the model state
variables). SG algorithm assumes this matrix fixed.



given the structure of the model (the two structural New Keynesian equations), the
central bank can influence (determine) the outcome of its policy by selecting the
appropriate monetary policy: the one that guarantees convergence to a particular
REE. If there are multiple RE equilibria, the policy in some cases may be selected
in such a way that would guarantee convergence to the most preferred equilibrium
(from the point of view of the stabilization policy).

We, in fact, link the study of stability conditions under a certain category of linear
monetary policy rules of Evans and Honkapohja (2003b) with the study of stability
under heterogeneous learning of Giannitsarou(2003). We first show that in the New
Keynesian—type of models, stability can be analyzed using the structural parame-
ters, whatever the type of heterogeneous learning used using the general criterion
of Honkapohja and Mitra (2006). These results are structural matrix eigenvalues
sufficient, and necessary conditions for stability of structurally homogeneous model
derived in this paper and aggregated economy sufficient conditions derived in Bogo-
molova and Kolyuzhnov (2006), where the concept of stability under heterogeneous
learning, known as d—stability, is introduced. Then we apply these results to derive
stability and instability results under heterogeneous learning for the two categories
of feedback rules: fundamentals based and expectations based, in the model with
arbitrary number of agent types.

Summarizing all the above, our work now looks, on the one hand, like a link be-
tween the study of stability under monetary policy rules for homogeneous learning of
Evans and Honkapohja (2003b) and the study of stability conditions under heteroge-
neous learning of Giannitsarou (2003), the link — through the d—stability conditions
derived by us for the general setup of Honkapohja and Mitra (2006) and through
the general stability criterion of Honkapohja and Mitra (2006). On the other hand,
this study can serve as one more economic example demonstrating application of
d—stability sufficient conditions.

The structure of the paper is as follows. In the next section we present the
basic New Keynesian model. In Section 3 we discuss general stability results under
heterogeneous learning. In Section 4 we give necessary, and sufficient conditions for
d—stability for structurally homogeneous models. Section 5 describes two types of

optimal policy rules and structure of reduced forms under each type. In Section 6



we provide stability and instability results for types of optimal monetary policies

considered in application to the New Keynesian model. Section 7 concludes.

2 Model

The model that we consider is a general New Keynesian model with observable
stationary AR(1) shocks. The structural form of the model looks as follows
Tp=c—¢ <th - Etﬂ't+1> + Etl'tﬂ + X1w
T = Co + Ay + 5Et7Tt+1 + XaWt,
where the first equation is for the IS curve and the second equation is for the
Phillips curve.
wy = [ wy, .. wg }' - observable AR(1) shocks®, w;, = pw;, , + vy, |p;| < 1,
~ iid (0,02), i =1,...k

This model is a general formulation of models derived from microfoundations

Vz't
that are considered in macroeconomics and monetary economic literature. The two
basic equations of the New Keynesian model, which are the Phillips curve and the
IS curve are derived from the optimal problems of the representative household

and the representative monopolistically competitive firm, with the assumption of

3Typically, New Keynesian models include only observable component (which is assumed to
follow an AR(1) process). However, there are specifications including both observable and un-
observable shocks. For example, Evans and Honkapohja (2003), who study stability rules under
recursive least squares learning, include unobservable shocks to the New Keynesian model equa-
tions. In our case more the general specification with unobservable shocks would contain additional
term Q¢ in IS curve and Qs¢; in the Phillips curve, where ¢; = [ €1, .. €Em, ]/ are unobservable
shocks, €;, ~ iid (0,73), i = 1,...,m, not correlated with observable shocks g;. Of course, these
unobservables do not bring the difference into the stability results (that is why we omit them in
the model analyzed), but introducing them into the setup has its own reasoning.

Introduction of unobservable shocks to structural equations when we consider central bank learn-
ing structural coefficients of the model. If we have only observable shocks (which play a role of just
another regressor — some exogenous variable) as well as other observable regressors, we will evaluate
the equations’ coefficients exactly if we have a sufficient number of observations. Then learning is
trivial. (The convergence will be very quick if initially we did not have enough observations, but
gained them over a short period of time).

If we think of how these unobservable shocks can emerge at the micro foundations level, we
may think of the following economic interpretation. For example, let us assume that preference
and technology shocks consist of observable and unobservable components. As for preference
shocks, we can imagine a qualitative change in our preferences, so that we know how the shock has
changed our preferences qualitatively, but we cannot precisely measure this change quantitatively.
A similar interpretation can be given to the technological shock. What we have measured enters
as observable component, while the measurement error (which always exists since we assume that
our quantitative measurement of any change is imprecise) is treated as unobservable component.



Calvo (1983) pricing mechanism in firms’ price-setting decision. So the two New
Keynesian curves are derived using the optimality conditions of the private agents
(households and firms). The derivation of these two curves for the standard New
Keynesian model setup can be found, e.g., in Walsh (2003). The description of the
New Keynesian model can also be found in Woodford (1996, 2003) and in Christiano,
Eichenbaum, Evans (2001).

In solving their optimization problems, private agents are assumed to take the
interest rate (showing up in the IS curve equation) as given. The interest rate, in
turn, is set by the policy -maker — the central bank. In various studies of monetary
policy issues (in the New Keynesian framework), it is normally assumed that the
policy—maker uses some linear feedback rule to set the interest rate. In general, a
feedback rule that is derived from the loss function minimization problem deter-
mines how the interest rate reacts to the expected values of the model’s endogenous
variables (inflation and output gap in the New Keynesian model) and the model’s
exogenous variables (various shocks, e.g., technology shock, preference shock, cost-
push shock). Instrument rules, like Taylor—type rules, are designed to respond to
the target variables (e.g., inflation and output gap). As is noted in the introduction,
Taylor-type rules will be considered in a separate study.

Plugging the feedback rule into the IS curve equation, we obtain the model
reduced form. Using the same New Keynesian equations (IS and Phillips curves),
we can obtain different educed forms for different policy rules, i.e. other things
being equal, the reduced forms structure depends on the policy rule. It depends
not only on the type of it (Taylor or optimization—based), but, as is demonstrated
by Evans and Honkapohja (2003b), on the assumption of the central bank about
private agents expectations, resulting either in the fundamentals—based or in the
expectations—based category of feedback rules.

After plugging some monetary policy rule of the central bank i;, (we will talk
about the types of optimal monetary policy rules later) the model can be written
in the reduced form that has a general representation of a bivariate system with
stationary AR(1) observable shocks process.

For derivations of our stability results we will allow for some generalization (as

it is just a matter of notation compared to the bivariate model) and will consider



multivariate (not just bivariate) system with stationary AR(1) observable shocks
process.

Y=o+ AEtyt+1 + Buwy,

(In our bivariate case, y; = [ T T ],) The expectations operator with “hat”
means that, in general, expectations of the private agents can be non-rational, which
makes it possible to introduce adaptive learning in this model.

In our notation, the reduced form is written in such a way that it includes all
factors that appear in the structural form. This means that the absence of some
factor in the reduced form in our notation is expressed by the corresponding zero
column of matrix B. (Note: We adopt such a notation here in order to be able later
to consider different specifications of learning algorithms that include factors from
different sets!.) So our notation is the most general that can be.

In adaptive learning models of bounded rationality it is assumed that agents do
not know rational expectations equilibrium and instead have their own understand-
ing about the relation of variables in the model. The coefficients in this relation
(that are called beliefs) are updated each period as new information on observed
variables arrives (in this respect agents are modeled as if they are statisticians, or
econometricians ) For the beginning, we will assume that agents have the following
perceived relation among the variables in the economy, which is called perceived law

of motion (PLM)

Y11 Yz - ik

) Y21 Vo2 - T2k ) )
that includes all components of wy, a bit later we weaken this assumption.

y=a+Tw , (a= [ a; as }I, I'= in the bivariate case)
Definition of RE, T-mapping
The rational expectations (RE) equilibrium is defined formally, in dynamic sto-
chastic models as Fy;11 = Etytﬂ. (see, e.g., Sargent (1993) or Evans and Honkapo-
hja (2001) for the meaning of the RE concept.) If we define the T-map as mapping
of beliefs from PLM to the resulting coefficients (that are calculated after plugging
PLM into actual dynamics (AD) of the economy) in actual law of motion (ALM),

4An example of when a model reduced form may not include all shocks that are present as
factors in the model structural form can be found in Evans and Honkapohja (2003), who used the
New Keynesian model setup of Clarida, Gali, Gertler (1999).



P1
T(a,T)= | Aa+ o, AT + B,

P
we will be able to write RE equilibrium condition as 7'(a,I") = (a,T).

Now we will widen the set of PLMs considered. Let us start with the following

definition.

Definition 1 Active factors set is a subset of set of histories of w;, up to time t

and a constant.

Note that by active factors set we mean not those variables that agents are actu-
ally aware of at time ¢, but essentially those that are used by agents in their PLMs
(the subset that may be smaller than the subset of actually available variables).

Agents now are assumed to have the perceived law of motion (PLM)

T T2

N Y21 Vo2
where w; consists of the components of w, included in agents’ active factors set.

Y = a+fﬂ7t , (In the bivariate case, it looks as a = [ a1 Qs ],, [ =

We renumber regressors that are included into agents’ active factors set from
1 to K/, the same is done with p's, and B is the corresponding part of matrix B
from the reduced form. We will denote the set of subscripts taken from {1,...,k}

corresponding to the active factors set as I.

P1
T-map: T(a,T) = | Aa+ a, AT + B

P
By analogy, one may try to write the REE condition as T (a, f) = (a, f) However,

in this case, it is clear that for the existence of a REE, agents have to include into
their active factors set those factors w;, that correspond to non-zero columns of
matrix B in the reduced form (PLM which consists only of such factors is a PLM
that corresponds to the so called minimal state variable (MSV) solution). Also, in
the above PLMs we have used the following assumption.

Assumption A Agents include in their PLM of each endogenous variable all
factors from their active factors set.

(So we exclude situations when agents do not include into the PLM equation
of one endogenous variable some factor having zero coefficient in matrix B of the

reduced form, while including the same factor in the PLM equation of another

Yk
Yok



endogenous variable, with this factor having non-zero coefficient in matrix B of the
reduced form. We assume that agents do not know the true structure of reduced
form and use all the available info to form their expectations. So, if one factor
is present in one PLM equation, it is present in other PLM equation. Essentially,
Assumption A postulates that we write each agent’s PLM equations in matrix form,
without a priori setting coefficients in some factors to zero. In addition, we assume
that all agents use the same set of factors (which in the matrix form means that they
use the same vector). We also note here that a similar assumption on the matrix
formulation of PLMs has been made by Giannitsarou (2003) and Honkapohja and
Mitra (2006).)

Next propositions state necessary and sufficient conditions for existence and for
uniqueness of RE equilibria in general multivariate model with stationary AR(1)
observable shocks. These conditions are well-known, but we prefer to state them
here for reader’s convenience. To formulate following propositions, we return back to
the initial numbering of shocks, denote constant in active factors set of agent as wy
and take p, = 1, B = a.. So, now i takes natural values from 0 to k. We will denote
this set as Iy and corresponding set of subscripts taken from I, = {0, 1,...,k} as :TVO.
Note that constant is always included as factor in any active factors set, therefore 0

always belongs to Ij.

Proposition 2 (Necessary and sufficient conditions for existence of a REE):
Under assumption A, RE solution exists if and only if agents active factors set in-
cludes among others all w; such that B* # 0 in reduced form and rank(p;A —I) =

rank(p;A — I, B%) for i such that det (p,A —I) =0 and B # 0.
Proof. see Appendix. m

Proposition 3 (Necessary and sufficient conditions for existence and unique-
ness of a REE): Under Assumption A, RE solution ezists and unique if and only
if agents active factors set includes among others all w; such that B* # 0 in reduced

form and for all included w;, det (p;,A —I) # 0.

Proof. see Appendix. m
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So, in what follows we always assume that Assumption A and the necessary and
sufficient conditions® for existence of a REE hold true. Basically, we will assume
that agents use in both equations of their PLM as minimum all the regressors that
appear in right hand side of reduced form, and that RE solution (either unique
or multiple) exists under such PLM. That is, in principle, we consider all possible
PLMs that include as minimum all regressors that appear in right hand side of the
reduced form and satisfy necessary and sufficient conditions of existence of the REE

, as stated in proposition above.

3 General stability results under heterogeneous
learning

Deriving conditions for stability of the multivariate forward—looking economic model
under mixed RLS/SG heterogeneous learning for any (possibly different) degrees of
inertia of agents, we naturally employ the general framework and notation from
Honkapohja and Mitra (2006), who were first to formulate general criterion for
stability of the structurally heterogeneous economy under mixed RLS/SG heteroge-
neous learning.

Honkapohja and Mitra (2006) consider the class of linear structurally heteroge-

neous models with S types of agents with different forecasts presented by
S

Yy =a+ Z AiElyi1 + Buy,
i=1
wy = Fwg_1 + vy,

where 1, is n x 1 vector of endogenous variables,w; is k x 1 vector of exogenous
variables, v; -white noise, Ezyﬂ_l are (in general, non-rational) expectations of the
endogenous variable by agent ¢, M,, = lim; ., wyw, - is positive definite, I’ is such
that w, follows stationary VAR.

PLM is presented by

Y = ai + I qwy.

Part of agents, 7 = 1,...,.5p, is assumed to use RLS learning algorithm while

®The propositions above have similar meaning to Proposition 1 of Honkapohja and Mitra (2006),
again, the condition requires matrices participating in deriving RE values of beliefs to be invertible.
The idea is to state that we are aware of the fact that there are cases when an REE may not exist
and of the conditions that are required for its existence (and uniquness).

11



others, j = Sy + 1,..., S, are assumed to use SG learning algorithm®. Moreover,
all of them are assumed to use possibly different degrees of responsiveness to the
updating function that are presented by different degrees of inertia d;, constant coef-
ficients before common for all agents decreasing gain sequence in learning algorithm.
(Honkapohja and Mitra (2006) use more general formulation of degrees of inertia.)

It is clear that such general formulation includes structurally homogeneous case
S S

of forward-looking model that we are interested in, A; = Z ¢; A, where Z ;i =1,
=1 =1

1 > ¢; > 0 is weight of agents of type i. Really,
S S

s
Y =+ Z AiEZytH + Bw; = a+ Z giAEfytH + Bw; = o + AZ giEfytH +
i=1 i=1 i=1
Egvery, 1y

Buw, is exactly formulation of the structurally homogeneous model, considered by
Giannitsarou (2003).

After denoting z; = (1,w;) and ®;; = (a;4, ), the formal presentation of
learning algorithms in this model can be written as follows.

RLS: forv =1, .., 5y

D141 =Dy + Oéi,t+1Ri_,t12t (ye — (I)é,tzt)/

Riyp1 =Ry + i (Zt—12£_1 - Ri,t)

SG: for j =Sy+1,...,9

DQjiv1=Pju+ 12 (yt — (I);‘,tzt)/

Honkapohja and Mitra (2006) that stability of REE, ®;, in this model is deter-
mined by stability of the ODE?®:

B — 5, (T(D) — ®;), i =1,..., S

0 Essentially, a part of agents are assumed to be more sophisticated in their learning (those that
use RLS), because from the econometric point of view, RLS algorithm is more efficient because it
uses information on the second moments.

"Heterogeneous learning in structurall homogeneous case was considered by Giannitsarou (2003)
for more general class od self-referential linear stochastic models, that includes in itself the case
of forward—looking models. Since our setup does not assume lagged endogenous variables, we are
concentrating on structurally homogeneous case of forward—looking models that are a subclass
of models considered by Giannitsarou and at the same time are a special case of the setup of
Honkapohja and Mitra (2006).

8In general case, to obtain the associated ODE, one has to take math expectation of the RHS
term (at the gain sequence) from the stochastic recursive algorithm (SRA) specification of a learning
algorithm, with respect to the limiting distribution of the state vector. See Ch. 6.2 in Evans and
Honkapohja (2001) for assumptions on the learning rule and state dynamics that have to hold so
that we be able to apply the theory on SRA and local convergence analysis and the general formula
for ODE (6.5) on p. 126.

12



I = §;M, (T(®) —®;), j=So+1,....5,

where M, = limy;_, o, Fz2).

The conditions of stability of this ODE give the general criterion of stability
result for this class of models presented in Proposition 5 in Honkapohja and Mitra
(2006).

In the economy above mixed RLS/SG learning converges globally (almost surely)
to the minimal state variable (MSV) solution if and only if the matrices D, and

D, Qr have eigenvalues with negative real parts, where

oily -+ 0 A~ - Ag
Dy = P = : 2
0 .- dsl, Ay - As— T,
Dyy -+ 0 FreA — Iy - F'® As
D, = DT SUSES : : ;
0 - Dyg FroA - FFoAs— Ly

Dwi = 5zInkzyZ = 1, ...,So, ij = (5]' (Mw (02 In) ,j = S() + 17 ceey S

Since in our setup we assume the "diagonal" environment, namely F' = diag(p, ..., pi.),
M, = diag (%, o %), the problem of finding stability conditions of both D;{)
and D, is simplified to finding stability conditions of D€} and D;(2, ,where 2,
is obtained from by substituting all A with p; Ay, where |p;,| < 1 as w; follows
stationary VAR(1) process by setup of the model.

In our paper Bogomolova and Kolyuzhnov (2006) we used special blocked—
diagonal structure of the matrix D; which is the feature of the dynamic environment
in this class of models.(In a sense these positive diagonal D—matrices now may be
called positive blocked—diagonal dJ—matrices.), that allowed us to formulate the

concept of J—stability by analogy to the terminology of the concept of D—stability,
studied for example in Johnson (1974).

Definition 4 Given n, the number of endogenous variables, and S, the number
of agent types, d—stability is defined as stability of the economy under structurally
heterogeneous mized RLS/SG learning for any (possibly different) degrees of inertia
of agents, o > 0.

d—stability, thus formulated, has the same meaning in models with heterogeneous

learning described above as has F—stability condition in models with homogeneous

13



RLS learning. F—stability condition is the condition for asymptotic stability of an
REE under homogeneous RLS learning. The REE of the model is stable if it is
locally asymptotically stable under the following ODE:

& =T0)-0,

where 6 are the estimated parameters from agents PLMs, T'(0) is a mapping of
PLM parameters into parameters of actual law of motion (ALM), which is obtained
when we plug forecasts functions based on agents PLMs into the reduced form of
the model and 7 is a "notional" ("artificial") time. The fixed point of this ODE is
the REE of the model.”

In case of structurally homogeneous learning, that we employ in current setup,
the criterion simplifies to the Jacobians considered by Giannitsarou (2003) where
she separated three types of learning. First to get structurally homogeneous learning
as discussed before one has to replace, A; with (;A.

The first type of heterogeneous learning is characterized by different initial per-
ceptions of agents and equal degrees of inertia, this is so called transiently heteroge-
neous learning, by Honkapohja and Mitra (2006). The condition for stability under
this learning is easily derived from the criterion above by setting all deltas to be
equal, and setting Sy to .S or to 0 in order to get transiently heterogeneous RLS or
SG learning respectively.

The second type of heterogeneous learning considered by Giannitsarou (2003)

9Notice, that d§-stability conditions on the Jacobian in general forward-looking model of
Honkapohja and Mitra (2006) do not depend on the particular equilibrium point (in case of mul-
tiple equilibria), because the system of differential equations is linear in this setup, in which case
the first derivatives of the RHS of the associated ODE do not depend on a particular value of a RE
equilibrium. So if stability conditions are satisfied for a given Jacobian, then all equilibrium points
are stable. Convergence to a particular point depends on the initial conditions. In this paper we
do not consider how equilibrium selection is done.

There may be specifications of models, like the ones considered in Giannitsarou (2003) or Evans
and Honkapohja (2001), that include lags of endogenous variables, such that there may be multiple
RE equilibria, as well as non-linear ODE system, implying that first derivatives will depend on
the value of a particular steady state point and hence different Jacobians and different stability
conditions. In case of different stability conditions, we may have situations when only one REE is
learnable (the one for which the Jacobian satisfies the corresponding stability conditions) or some
(or all) of the REE are learnable (if all Jacobians satisfy the corresponding stability conditions).
As has been said above, the selection of a particular REE of those that are learnable depends on
the initial conditions. There also may be cases when there will be switching from one learnable
equilibrium to another, e.g. in Kasa (2004) for the case of constant-gain formulation of learning
under which escapes from the area of attraction of one equilibrium point are more probable. The
equilibrium selection issues require a separate study and are not considered here.
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is learning when agents use different degrees of inertia and same type of learning
algorithm (RLS or SG) (This is what Honkapohja and Mitra (2006) call a persis-
tently heterogeneous learning in mild form). The Jacobians for this case are easily
derived by setting Sy to S or to 0 in order to get heterogeneous RLS or SG learning
respectively and allowing for possibly different deltas.

The third type of heterogeneous learning considered by Giannitsarou (2003) is
learning when different agent use different learning algorithms. It is characterized
by possibly different initial perceptions, possibly different degrees of inertia, and dif-
ferent agents using different learning algorithms (RLS or SG). Such kind of learning
Honkapohja and Mitra (2006) called persistently heterogeneous learning (in strong
form).

The stability Jacobians for this case are derived by writing the general criterion
of stability for structurally homogeneous case, i.e. by setting A; = (;A, the thing
we did from the very beginning.

Relation between the formulation of types of heterogeneous learning by Giannit-
sarou (2003) and Honkapohja and Mitra (2006) from the discussion above can be

conveniently summarized in the following table!’:

10Note, that there is one type of heterogeneous learning that was not introduced by Gian-
nitsarou (2003) and introduced here. It is heterogeneity in degrees of inertia when all types
of agents use SG learning algorithm. Although Honkapohja and Mitra (2006) have general cri-
terion for stability in this case (as discussed above), their formulation includes only forward-
looking models. In general setup of self-referential structurally homogeneous models of Gian-
nitsarou (2003) the stability conditions under such type of learning (in Giannitsarou (2003)
notation, naturally extended from her proofs) would depend on the stability of the matrix
J5¢ (®f) = diag (61,...,05) @ I @ M (®f) @ JE5 (D), where @ is an REE, M (@) defined analo-
gously to M, and J&5 (® ) is Jacobian that defines stability in case of the first type of heterogeneity
(different initial perceptions of agents) when all agents use RLS learning. For details, see Giannit-
sarou (2003). Again, it is clear that in forward—looking case these conditions of stability will fall
under the general stability criterion of Honkapohja and Mitra (2006) with Sy = 0 (see the table
above).
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Type of heterogeneity Type of learning | Assumptions in general
in learning algorithm H&M (2006) model

structurally structurally
heterogeneous | homogeneous

I Different initial perceptions RLS 0; =0 for all i, Sy =S
(transiently heterogeneous SG 0; =46 for all 7, Sop =0
learning )

IT Different degrees of inertia RLS So=25

(persistently heterogeneous SG So=0

learning in mild form)

IIT Different learning algorithms | RLS and SG
(persistently heterogeneous
learning in strong form)

One more comment regarding applicability of Honkapohja and Mitra (2006) con-
structions for analysis of our setup. Agents in setup of Honkapohja and Mitra (2006)
are assumed to use PLM that corresponds to the so-called MSV solution, i.e. in-
cludes all factors that appear in the right hand side of the reduced form. However,
Honkapohja and Mitra (2006) do not have restrictions in their proof of conditions
for stability of the system on the matrix B. This means that we may, in princi-
ple, consider additional factors in learning that enter into reduced form with zero
coefficients in matrix B for all agents. This means that we have to consider the
criterion conditions for all possible PLMs that include (among others) all factors
that appear in right hand side of the reduced form, satisfying conditions of exis-
tence and uniqueness specified in the previous chapter. And for this we have only
to consider different matrices F', corresponding to different sets of factors in PLM.
However, since all matrices F' have special diagonal structure F' = diag(p, .., p;), as
said above, the problem of analysis of J—stability is simplified to finding stability
conditions of D;{) and D{}, ,where €, is obtained from € by substituting all Ay,
with p; A,.wherei is taken from the corresponding set of factors included into PLM.
And since |p;| < 1 as w, follows stationary VAR(1) process by setup of the model, it
significantly simplifies the so-called aggregated economy conditions (necessary, and
sufficient) for j—stability, allowing to state them without p’ at all. (For details,
please see Bogomolova and Kolyuzhnov (2006)).
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4 Necessary, and sufficient conditions for )—stability
for structurally homogeneous models

First, we provide the reader with a set of sufficient conditions for d—stability ap-
plicable to our setup. We will present the so—called "aggregated economy" sufficient
condition for the case of structurally homogeneous model that was derived in Bo-
gomolova and Kolyuzhnov (2006) from more general set of "aggregated economy"
sufficient conditions for structurally heterogeneous models, and "equal sign" suf-
ficient condition for the case of structurally heterogeneous bivariate economy that
again was derived in Bogomolova and Kolyuzhnov (2006) using alternative definition
of D—stability described in Johnson (1974) and subsequent alternative definition of
d—stability derived in Bogomolova and Kolyuzhnov (2006).
s

Proposition 5 For structurally homogeneous economy: A, = (, A, ¢, > 0, Z =
1,to be d—stable it is sufficient that at least one of the following limiting ag};?legated
B—coefficients (that are coefficients before the expectation term of one—dimensional
forward—looking aggregated economy model. For details see Bogomolova and Kolyuzh-

nov (2006)): mzax; ‘aij| and m]aX; |aij‘ be less than one.

Proof. see Bogomolova and Kolyuzhnov (2006) m

Proposition 6 In case n = 2, structurally heterogeneous economy is d—stable if €2
is stable and an "equal sign" condition holds true, where the "equal sign” condition

looks in general case as follows

det (—p,Ai) > 0, [det mix (—pA;i, —pAj) + det miz (—pA;, —pAi)] > 0, @ # 7,
Mi(=p4i) = 0,

or

det (—p,Ai) <0, [det mix (—pA;i, —pAj) + det miz (—p A, —pAi)] < 0,4 # 7,
Mi(—pA;)) <Oforalll=0,1,....k (p, =1)

(Here we introduce the concept of a pairwise mixed economy which is an economy
characterized by a matrix of structural parameters composed by mixing columns of
a pair of matrices p;4;, p;A;, for any i, j =1,...,S.)

Proof. see Bogomolova and Kolyuzhnov (2006) =
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It is also possible to derive some necessary, and sufficient conditions of d—stability
in structurally homogeneous case in terms of the values of eigenvalues of matrix of
structural parameters of the reduced form, A. It is possible by direct application
of so-called characteristic equation approach, when one requires that all the roots
of the polynomial (that are eigenvalues of Jacobian matrix) are less than zero for

stability, the latter being equivalent to well-known Routh-Hurwitz conditions.

Proposition 7 If all eigenvalues of A are real and less than one, then the struc-
turally homogeneous system with two agents is d—stable (that is stable under three
types of heterogeneous learning: agents with different initial perceptions with RLS or
SG learning, agents with possibly different degrees of inertia with RLS or SG learn-
ing, and agents with different learning algorithms, RLS and SG). For the structurally
homogeneous system with any number of agents to be d—stable, it is necessary that

all real Toots of A are less than one. (This gives a test for non——stability)

Proof. see Appendix m

In proof of the proposition above we, using the structure of the Jacobian matrices
in our setup, have derived a sufficient condition for stability under all three types
of heterogeneous learning with two agent types. We did this using the criterion
for stability of Honkapohja and Mitra (2006). For the case of real roots of A, we
have shown that in this setup, analysis of stability of a particular Jacobian turns
into the analysis of stability of A, which gives us very simple eigenvalues conditions.
Also, using the general criterion of Honkapohja and Mitra (2006), we have proved
here necessary conditions for d—stability (the failure of which is sufficient for non—

d—stability) for the case of arbitrary number of agent types.

5 Optimal policy rules and structure of reduced
forms

Here we describe the types of optimal policy rules that are analyzed in this study.
The policy-maker is assumed to use the loss function minimization problem, which
comes from the flexible inflation targeting approach (a policy regime adopted in

several countries in the 1990s), described and defended by Svensson (1999). The
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central bank here has two options: adopt a discretionary policy, by solving the prob-
lem every period, or commit to the rule which is once and for all derived from the
minimization of the infinite horizon loss function. Svensson (1999) and Cecchetti
(2001) advocate the first option, which is essentially commitment to a certain behav-
ior (minimizing the loss function) with reconsidering the optimal rule every period
(so that to take into account new information). They provide various arguments,
like inefficiency (in general) of instrument rules designed to respond only to target
variables, or how monetary policy decisions are made in practice.

The infinite horizon loss function of the policy maker for flexible inflation tar-

geting approach looks as follows.

i \2 _\2
%EtZﬁ la (g = &)° + (mpps — 7)7]
i=0
Since we assume discretionary policy of the policy maker according to the dis-

cussion above, the problem of minimizing loss function simplifies to solving each

period

% [a(a:t—af)z—l—(wt—ﬁ)ﬂ + Iy
subject to
T = o + Axy + F; (government takes the remainder terms of the loss function

F+, and constraint, F; = 6Et7rt+1 + X wy, as given).

The classification below of the loss—function—optimization—based rules into fun-
damentals based and expectations based is due to Evans and Honkapohja (2003b).
Derivations of theses rules and corresponding reduced forms were done by Evans
and Honkapohja (2003b) for a slightly more narrow setup than we assume here (we
assume general structure of autoregressive shocks), therefore we basically repeat

their steps in derivations that follow below, extending them for our setup.

5.1 Expectations—based optimal policy rules

Expectations—based policy rule implies the central bank’s reaction to (possibly non-
rational) expectations of private agents, assuming that these expectations are ob-
servable (or can be estimated). Its general form is i; = dg + 57FE’t7rt+1 + 5xEtxt+1 +

d. wy. The coefficients of this rule are obtained by solving the equilibrium conditions
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(structural equations with non-rational expectations of private agents and FOC of
the central bank).

Thus, the optimal expectations based optimal policy rule is derived from F.O.C.
AMmg—T)+a(zy—2)=0

and

Tp=0¢—¢ (it - Eﬂtﬂ) + Etxtﬂ + X1wy

T = Co + ATy + BE\ﬂrtH + XHwy

From this we get expectations based policy rule:

i = 00 + 0 Eymysy + 05 Byweq + 0wy, where

Jo=—(N+a) g (M +az — ey — (a+\%) er)

0r=1+(N+a) o A8

0p =7

dw =@ 1x; + ()\2 + oz)_1 © 1A,

After plugging this policy rule into the IS curve equation, we get the following
reduced form.

ye = + AEEtyt+1 + xPwy,

wy = Fwy_1 + vy,

yt:[ﬂt Tt ],7

-1
where AF = fa (N +a) . 0
—BA(N+a) 0
B = diag(p;)
lpil < 1, v, ~iid (0,0%),i=1,...,n

CE: ( CQ+)\(01—Q0(50) 01—30(50 ),

2

E _ < Xz |:1_)\2>\+a] )
X = A2
T XraX2

Note that REE solution is not needed neither for deriving A® matrix, nor for
deriving coefficients of optimal expectations—based policy rule. REE solution will
be needed for deriving optimal fundamentals—based policy rule, and therefore will

be derived in the corresponding part of the text.

5.2 Fundamentals based optimal policy rules

In general fundamentals based policy rule (not necessarily optimal) has the form
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i =Yg+ Z U Wi, = Yo + YWy
i=1
We will show later that there exists unique fundamentals based optimal policy
rule in this setup and will find it.
Plugging this policy rule into the structural form
Ty = — ¢ (it - Eﬂtﬂ) + Etxtﬂ + Xjwy
T = Co + A\xy + BENHH + Xpw;
we get the reduced form
yp =" + AFEtQtH + xFwy,
wy = Fwi_q + vy,
/
Yt = [ Ty Ty } )
where A" = ( B+ A )
%) 1
F = diag(p;)
lpil < 1, v, ~4id (0,02),i=1,..,n
/
= ( c1— oy ca+ A1 — i) )
A (=i, +x1) + X5

X — oy, + X
Optimal fundamentals—based rule, under the central banks’ discretionary policy,

is obtained from the loss function minimization, with the central bank assuming that
private agents have RE. Its general form, when the REE structure is y; = a+Twy, is
iy = 1y + . ws, where w; is a vector of exogenous variables. Using the equilibrium
conditions (economy’s structural equations with REE structure entering them and
the FOC of the central bank’s optimization problem), we obtain coefficients of the
REE and of the optimal fundamentals based policy rule.

To get REE,one has to write down ALM using Phillips curve m; = ¢o + Axy +
Bﬁtwt+1+x’2wt, FOC of the government optimization problem A (7; — 7))+« (z; — ) =
0 and PLM in general form, y; = a+I'w;, and then according to RE principle equate
coefficients of resulting ALM (T—mapping) with corresponding coefficients of PLM.

Resulting ALM looks as

_ cotA[AT+az] afB a /
T = 255 3oha 0 V1AW e V1P Wi] + s Xowe,
o )Jr;l;a:?: o gﬂ—t

REE looks as

o= ai+ Y Viwa
=1
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n
% *
Ty = Qg + E Y2iWit,
i=1

where
o — co AT +ai) qf — Mi+a@ _ A —2co+(1-B) [N +ad] * QX2 P; *
1T Vhap) 0 27 Ta ! Nra(i-p) 0 V1 T ali-pp) V2
ANk MXaibs s
SV = ﬁa(lfﬁpi)Jr)\ s z-l,...,n

To get optimal fundamentals based policy rule, one has to express i; using IS
curve, r; = c; — ¢ (it - Etwt+1> + Etxt_t,_l + xjwe, plugging in it RE solution derived
above. . . .

i =—1 ( +) vw) + ( +y mpiwit) +1 ( +> v;,»p,-wit> +Lxw

i=1 i=1 i=1

As a result, optimal fundamentals based policy rule looks as

iy = gy + Uiw,, where

vy =i

Yy = é [( Yor(pr—1) o Yo (P — 1) )+X1} + ( YuPr oo VinPn )

In both cases, we plug the corresponding policy rule into the structural equations
and obtain the corresponding reduced form of the model. These RF's were studied for
stability under homogeneous RLS learning in the Clarida, Gali and Gertler (1999)
formulation of the New Keynesian model by Evans and Honkapohja (2003b), who
have derived the stability results for expectations based rule and instability results
for fundamentals based rule. We study stability and instability for the two cate-
gories of rules under heterogeneous learning in a general setup of the structurally
homogeneous New Keynesian model. When our model is structurally homogeneous
and private agents are heterogeneous only in the way they form expectations (and
learn), the two structural equations of the New Keynesian model will have, as the ex-
pectations term, weighted expectations of different agent types (with weights being
the mass of each agent type), which will be multiplied by a common structural pa-
rameters matrix. The expectations—based policy rule, in this setup, will also depend
on the weighted expectations of private agents, and so will the economy’s reduced

form.
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6 Stability problem in the New Keynesian model

After deriving conditions for d—stability for our class of models, we are ready to
check for d—stability of our New Keynesian model under different types of optimal
monetary policy rules. For this we have to test the resulting (after substituting
for particular type of policy rule) A matrix of the reduced form with respect to

applicability of sufficient and necessary conditions of J—stability.

Proposition 8 General New Keynesian model with stationary AR(1) observable

shocks process is d—stable when optimal expectations-based policy rule is applied.

Proof. We have that corresponding A matrix in optimal expectations-based pol-
2 -1

fa ()\ 2+ a) 1 0 . Using the "equal sign" condition in

—BA(XN+a) 0

proposition above, we have that € is stable, since its eigenvalues are determined from

icy rule case is A¥ =

the following characteristic equation det (A¥ — I (1+ p)) (1 + 1?5 = 0 and
therefore are equal to —1 and So (/\2 + oz)_l — 1, i. e. negative, and det (—p,A;) =
0, [det miz (—pAi, —pAj) + det miz (—pAj, —pAi)] = 0, @ # j, Mi(—pAi) =
—p, ¢ Ba (/\2—|-oz)_1 > (<)0for all I = 0,1,....%k (py = 1), so "equal sign" con-
dition holds true. Notice, that using the "aggregated economy" sufficient con-

dition from proposition, we can write down two aggregated [—coefficients in this

case. These e 51 = mpx 37 | = ma {3 (3 )92 (4 4 )"} ana
J

max _ maxz ‘aij‘ = B(a+)) ()\2 + a)fl. It is clear that both coefficients are
J X

less than one ;f A > 1. So, the "aggregated economy" sufficient condition for —
stability is more restrictive condition compared to "equal sign" condition since it
requires additional assumptions on the structure of the economy. However, it can be
with success applied in more than two dimensional economies where similar "equal
sign" conditions are not sufficient for d—stability (see Bogomolova and Kolyuzhnov
(2006)). =

Note, that Evans and Honkapohja (2003b) have the same result for a homoge-

neous learning of partial case of this formulation.

Proposition 9 General New Keynesian model with stationary AR(1) observable
shocks process is non——stable, when fundamentals—based policy rule (including op-

timal fundamentals-based policy rule) is applied.
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Proof. We have that corresponding A matrix in fundamentals—based policy rule

case is A" = ( ftAe A Using the "eigenvalues" necessary condition from

1

proposition!!, we get the eigenvalues of this matrix. i 5 = 1—1—’8“2“’_1 :I:\/(’8+>‘2“’_1)2 + .

Both of these eigenvalues are real and eigenvalue p; = 1+ B Hf_l +\/ (5 Hf_l)z + A
is greater than one. So, the sufficient condition for non—d—stability is satisfied. m

Again, Evans and Honkapohja (2003b) have the same result for a homogeneous
learning of partial case of this formulation.

The first proposition means that RE in this model resulting after implementing
optimal expectations-based policy rule, is stable under recursive least squares (RLS)
and stochastic gradient (SG) homogeneous learning and three types of heterogeneous
learning: agents with different initial perceptions with RLS or SG learning, agents
with different degrees of inertia with RLS or SG learning, and agents with different
learning algorithms, RLS and SG. The second proposition claims that the RE of the
same model but with fundamentals—based policy rule is always unstable under any

type of heterogeneous and homogeneous learning of agents.

7 Conclusion

We have used the environment of the New Keynesian model to explore the ques-
tion of stability of two categories of monetary policy rules under the assumption of
heterogeneous learning of agents.

These two categories were introduced by Evans and Honkapohja (2003b), and
this division is based on the assumption about the central bank’s perception of
private agents’ expectations: RE or possibly non-rational. Under the central bank
assuming private agents to have RE, the fundamentals-based rule is obtained, while
the case of the central bank assuming possibly non-rational expectations of private
agents results in the fundamentals-based rule.

The purpose of this research was, on the one hand, to explore whether, given

structural homogeneity of the model, heterogeneity in learning of agents influences

UTn principle, we could also use our necessary conditions for delta-stability (derived in our other
paper) to show instability of the fundamentals-based rule. But this may be more difficult to check
than the necessary conditions on eigenvalues that we derived in this paper. Besides, our eigenvalues
necessary conditions work for the case of arbitrary number of agent types.
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stability results implied by the application of either of the two categories of policy
rules.

Using the general criterion for stability of Honkapohja and Mitra (2006) and our
sufficient delta-stability conditions, for the case of heterogeneous learning, we obtain
results similar to those obtained by Evans and Honkapohja (2003b) for the case of
homogeneous learning. In particular, under the fundamentals-based policy rule,
the model economy is always unstable, so there is no convergence to the associated
REE of the model, while there is stability under the optimal expectations-based rule
and the economy converges to the REE corresponding to optimal monetary policy
without commitment.

The above-described results have been obtained using only the structure of the
model, so there is no dependence on heterogeneity of any type considered. This
implies that in the structurally homogeneous New Keynesian model, there is no
dependence of stability results on heterogeneity of learning, so the representative
agent hypothesis is applicable in this setup.

While checking the applicability of this hypothesis in structurally homogeneous
New Keynesian model with heterogeneous learning of agents, we have not considered
Taylor-type rules, which do not fall under the classification of Evans and Honkapohja
(2003b).This issue will be considered in a separate study.
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A Appendix

Proof of Propositions 2 and 3:
PLM in general form, y; = a + ['w;. If w; is not included in PLM, it is reflected

in corresponding zero column of I'. The REE conditions can be written as (p; A —

i A
I,,) +B'=0,i¢€ I.
Vi
Vi
It is clear, that in case ¢ is not included into active factors set, that is =0
Vni

sthen in order to have REE solution, B has to be equal to 0, that is one can
omit in PLM only those factors, that have zero column of B in the reduced form.

Equivalently, it is clear that if B; # 0, then in order to have REE solution, one

Vi
should not have = 0, that is have to include w; into active factors set.
Vi
Vi
In case i is included in active factors set, that is # 0, the REE solution
Vi

exists if and only if the following condition holds true.

B" =0, or (B # 0 and det (p;A — I) # 0), or (B* # 0 and det (p,A — I) = 0 and
rank(p,A — I) = rank(p,A — I, B')).

Combining the two cases we get the statement in the proposition 2.

For the proposition 3, one has only to refine the last conditions to guarantee

uniqueness of solution.

Vi
In case i is included in active factors set, that is # 0, the REE solution

Vi
exists and unique if and only if the following condition holds true.

det (p;A—1) # 0.
Proof of Proposition 6:
Necessary conditions and sufficient conditions in terms of eigenvalues for struc-
turally homogeneous case.
A= (L)1 Ag
det (2 — D~ tul) = det : : =0,
A AS—<1+§>I
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It is clear from the structure of the matrix above that ;1 = —¢;, is a root if and
only if at least one of the following holds true: A is singular or there exists at least
one other §; that equals to 9;,.

(If A is singular than 1 = d;,7 = 1, ..., S are the roots. That is if none of —§'s is

the root than A is non-singular.)

Assume that A is non-singular and all §;’s are different, that is that none of —d's

is the root.
If there are other roots than —d;s (case of eigenvalues p = —§; < 0 isobvious)

then they satisfy the characteristic equation for getting eigenvalues of Df) that are
not equal to —4; :

_A .
det {1+§+---+1w +I] =0

AZ:CiA, Z<i=1

Developing it further, one gets
det |A 1+H>+I]:0

and ﬁnally
Ak ( +..t+ 7 + = ) — 1, for those eigenvalues of A, \; that do not equal to

1+“

zero. If all \; = 0, then A is zero matrix and the only eigenvalues of D are —d,’s.
As complex eigenvalues of a real matrix A come in conjugate pairs, the systems

above are equivalent to
Re()\;.c)Re<1+H + .. +1+5 )—Im()\k)lm (1+“ + .. —|-1+M ) =1

1 S

for each pair of Conjugate elgenvalues.

In case of real eigenvalue, Im (A\;) = 0, the corresponding system simplifies to

Re(Ak)<l+u+ +1+;1.):)\k-(1+u+ +1+5M>:1
or eigenvalues i to be negative it is necessary, that

For any S we have that

1

L
s > (,therefore that A\, < 1

Xed1-0g

For S = 2, the system corresponding to real eigenvalue looks as
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AG) 68, 2t

1+ p
ARd102 ARd102
Routh-Hurwitz conditions for negativity of real parts of p are necessary and

sufficient and look as

M > ()
359102
1(11) (a6
’\k<51 52)1 ( 51) >0

0102
The system of inequalities above is equivalent to
A <1

1

7+7
>\k < 21 92

3ty 1-¢ 1—¢

. _ —¢y . e

And since :1+<3 > 1, as 5+ + =52 > 0, the last system of inequalities is

equivalent to )\k <1.
Thus, we get sufficient condition for stability for case S = 2, that all eigenvalues
of A are real and less than 1, and necessary condition for stability for any S is that

all real eigenvalues of A have to be less than 1.
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