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Abstract

The price formation mechanism in an asset market with boundedly rational agents can be
viewed as a filter acting on incoming news about economic fundamentals such as future div-
idends. Here we study the properties of an asset pricing market filter obtained under some
simple behavioral assumptions, and examine the resulting dynamical structure of the fluctu-
ations of the market price around the time-varying underlying fundamental reference price.
The starting point is an asset pricing model in which agents can choose among two differ-
ent degrees of information on fundamentals. At the same time agents are also learning the
parameter of the dividend generating process. This leads to prices that deviate substantially
and persistently from the fundamental value in the short run but stay close to it in the long
run. In particular, prices have a time-varying nonlinear mean reverting dynamics which we
show to be related to agents’ interaction triggered by informational differences.
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1 Introduction
Since the beginning of the eighties, the validity of the efficient market hypothesis has been ques-
tioned on the basis of empirical evaluation of so-called financial anomalies. Well-known exam-
ples are excess volatility, as described by Shiller (1981) and LeRoy and Porter (1981), reversion
of the asset prices to its mean, as documented by Poterba and Summers (1988) and Fama and
French (1988b), and correlation between returns and lagged returns or lagged dividend yields, as
shown by Shiller (1984) and Fama and French (1988a).

Stimulated by these findings, a part of the scientific community has investigated whether such
anomalies can be explained by assuming that the agents operating in the market are boundedly
rational. Although the exact implication of bounded rationality varies among the different mod-
els, a common characteristic is that boundedly rational agents act in an economic setting which
they do not know in full detail. Furthermore, agents are often assumed to be able to optimize an
objective function under certain constraints but unable to optimally anticipate the effect of their
and other agents’ actions. In particular boundedly rational agents are not assumed to be able to
coordinate their actions such that their beliefs are self fulfilling. In other words, expectations of
boundedly rational agents need not to be rational.

In order to explain fluctuations in prices that are not due to fluctuations in economic funda-
mentals, one class of models with boundedly rational agents concentrates on the interaction of
agents choosing different expectation schemes, as first analyzed in Brock and Hommes (1997).
In a study of a stylized financial market, Brock and Hommes (1998) assume that agents do not
know whether it is more profitable to use a strategy that predicts prices by relying on fundamental
information, or a strategy that predicts prices by extrapolating trends. Agents use realized prof-
its or a similar performance measure to decide which strategy to use. The result of this choice
for the best strategy, or best predictor, leads to complex endogenous price fluctuations. Since
such endogenous fluctuations can already arise in the absence of exogenous influences such as
time-varying fundamentals, explicit exogenous noise sources are often avoided, for instance by
assuming constant fundamentals and reformulating the price dynamics in terms of deviations
from the fundamental value. An advantage of this assumption is that the price dynamics can be
specified in terms of (often nonlinear) difference or differential equations which can be analyzed
analytically.

A limitation of models in this class is that they typically do not take into account the di-
rect effect of news about the economic fundamentals on agents’ behavior thus excluding one of
the most trivial behavioral scenarios one might deem important in asset price formation — the
over- or under-reaction of agents, and hence the market, to new information. Generally speak-
ing, market models that tend to a stable equilibrium state in the absence of news can still show
fluctuations triggered by the arrival of new information. Because a priori we do not know if
market fluctuations are necessarily self-perpetuating as in chaotic dynamics, we explicitly wish
to examine the role of exogenous noise on the price dynamics, thus keeping open the possibil-
ity of scenarios where ongoing market fluctuations require repeated triggering by a sequence of
exogenous shocks.

In view of this critique, there is another class of models in the literature of asset markets
with boundedly rational agents, which explicitly takes into account the role of news on funda-
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mentals on the price dynamics. Early examples are Bulkley and Tonks (1989) and Barsky and
De Long (1993) who investigate the effect of agents’ learning of the growth rate of dividends
from movements in the stock price. More recent examples are Timmermann (1993), Timmer-
mann (1996) and Barucci et al. (2004), who assume that agents estimate the parameters that
define the relationship between prices and dividends. In all these cases, agents use the rational
expectations relationship that would hold between endogenous variables (prices) and exogenous
variables (dividends) if the underlying parameters were known. That is, agents do not take into
account that their learning effort is modifying the way dividends feed back into prices. When
new information about dividends becomes available, it influences returns not only directly but
also indirectly as it affects the estimates of the parameters that the agents use to forecast future
prices and/or future dividends. These models converge to rational expectations when the agents
learn the parameters of the data generating process. A limitation of these models is that they all
assume the presence of a representative agent, so that agents’ interaction triggered by informa-
tional differences or by different expectations do not play a role. Moreover, due to the stochastic
components associated with the incoming news about the fundamentals, results are practically
always obtained by means of simulations.

Motivated by these arguments, the aim of this paper is to construct a framework for examining
markets with boundedly rational agents where both parameter estimation and agents’ interaction
play a role. When we use boundedly rational agents, we do not question that rational behavior,
and especially rational expectations, can be a good approximation of the equilibrium of agents’
repeated interaction, rather. We rather argue that the convergence to such an equilibrium is
worth investigating as it might explain part of the economic variables’ fluctuations we observe
in reality. Our objective is to characterize how both parameter estimation and agents’ interaction
transform incoming information into realized market prices. Because it is impossible to carry
out this exercise under all conceivable behavioral assumptions, we limit ourselves to a simple
class of agent models, where all agents act upon the information available to them regarding
fundamentals (including that revealed by prices). Agents’ interaction is triggered by different
expectations and different expectations can be explained by different degrees of information
regarding the future value of dividends. This means that agents neither extrapolate price trends
or use other chartists’ rules per se, nor expect other agents to do so, so that second – or higher –
order expectations play no role.

A convenient characteristic of our model is that it contains two important benchmarks as
restrictions. The first benchmark is given by the classical asset pricing model: the equilibrium
price we derive coincides with the correct present value price when one discards both the role
of informational differences and of agents’ learning the growth rate of dividends. The second
benchmark is given by the model developed in Barsky and De Long (1993): our equilibrium price
coincides with the price derived in the model of Barsky and De Long if does take in to account
that agents’ are learning the growth rate of dividends and discards the role of informational
differences. Our model can thus be seen as an extension of Barsky and De Long model when
agents with different information sets are active in the market.

We investigate the extent to which our model is able to explain empirical properties of asset
prices. As it turns out, the agent-based dynamics driven by exogenous noise leads to a sim-
ple econometric model for prices that can account for several well-documented anomalies such
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as autocorrelation of returns and large persistent deviations of the market price from the fun-
damental price in the short run but convergence to it in the long run. In fact, in line with the
econometric model proposed by Summers (1986), our model leads to a (log) price which is the
sum of a persistent component, proportional to the (log) dividend, and of a transitory component,
proportional to the (log) dividend yield, which we derive to follow a stationary AR(

�
) process

with a time-varying AR(
�
) coefficient. Our analysis shows that whereas the fact that the transi-

tory component follows an AR(
�
) process is a direct consequence of agents’ learning the model

parameters, the fact that the AR(
�
) coefficient is time-varying is due to agents’ interaction trig-

gered by informational differences. This offers theoretical support to the empirical evidence that
the temporary component in the mean reversion is nonlinear and is switching between regimes
with different rates of convergence, as documented both by Gallagher and Taylor (2001) and by
Manzan (2003).

As we consider an asset market where agents have different degrees of information, our
framework is closely related to that of Grossman and Stiglitz (1980) (henceforth GS). They in-
vestigate whether the price is informationally efficient in a repeated market for a one period living
asset where agents can decide between two different degrees of information about the value of
the asset return at the end of the period. As GS, we also assume that agents operating in the
asset market can decide whether or not to be informed about next period’s dividend. In contrast
to GS, and similar to Bray (1982), Hellwig (1982) or Routledge (1999), we consider a dynamic
model rather than a static one. By this we mean that we do not start off by assuming that agents
have rational expectations but rather see rational expectations as a possible long run outcome of
a learning process of boundedly rational agents which are using simpler rules. Failure of the un-
informed agents to learn the relationship between prices and dividends implies deviations of the
price from its fundamental value. Moreover, we assume that the fractions of informed and unin-
formed agents are not constant but change over time based on past performances of both strate-
gies. The fraction of each type of agents is thus an endogenously determined variable. Another
difference with the framework of GS and followers is that we model a market for an infinitely
living asset rather than of a sequence of identical markets for a single period asset. This implies
that agents need to form expectations not only on the future values of the dividend but also on
the remaining value of the asset. To our knowledge, Goldbaum (2005) is the first to consider
a dynamic multi-period market in a setting where agents have different degrees of information.
Whereas Goldbaum assumes the asset’s dividend to be stationary in differences, we assume, in
order to stay closer to real data, that the asset’s dividend is stationary in log-differences. Accord-
ingly, we choose to derive our agents’ demand from mean variance maximization of a constant
relative risk aversion (CRRA) utility function rather than from a constant absolute risk aversion
(CARA) utility function as in Goldbaum (2005). Choosing a CRRA framework also allows us
to model the evolution of fractions of informed and uninformed agents by a replicator dynamics
type of mechanism (see Weibull 1995 for an introduction to this kind of evolutionary dynam-
ics). In fact, we show that, the evolution of informed and uninformed agents’ relative wealth, or
market power, leads naturally to the replicator dynamics.

Our model shows that financial markets populated by agents with different degrees of in-
formation can be seen as economic systems with negative feedback. This establishes a precise
correspondence with the famous cobweb model, see Ezekiel (1938), and with the literature that
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originated from it, such as Muth (1961) and Brock and Hommes (1997). Our equation for the
evolution of the dividend yield as a function of the uninformed agents’ expectations has a perfect
correspondence with the equilibrium price equation in a cobweb model in the case of linear sup-
ply and linear demand. We refer to this literature to justify the expectation formation of bound-
edly rational agents. In particular Brock and Hommes (1997) show that if rational expectations
come at a cost, boundedly rational agents keep switching between an expensive sophisticated
and a cheap simple expectation scheme, thus generating complicated price fluctuations. Because
we want to keep our model as simple as possible, we do not explicitly model agents’ choice
between cheap simple expectations and expensive sophisticated expectations. We concentrate
on informational difference and model agents’ expectations as adaptive. An analysis where both
informational differences and the role of expectations scheme choice play a role is performed by
De Fontnouvelle (2000). He shows that if agents are allowed to switch among different types
of expectations schemes and if rational expectations come at a cost, an asset market of the type
proposed by GS leads to similar price fluctuations as Brock and Hommes (1997) found for the
cobweb model. By considering informational differences as well as the choice of an expectations
scheme, even in the simpler case of a one period living asset, De Fontnouvelle arrives at a rather
complicated model that is analyzed mostly by means of simulation, rather than analytically as
we do here.

The paper unfolds as follows. Section 2 introduces the model in terms of its three founding
elements: the asset market (2.1), the expectation formation (2.2) and the evolution of the fractions
of informed and uninformed agents (2.3). Section 3 analyzes the co-evolution of the market
price and of the fractions of informed and uninformed agents in a world without uncertainty
about future growth rates of dividends. Technically in this section we analyze the deterministic
skeleton of the system of difference equations developed in Section 2. Section 4 analyzes the full
model, i.e. the evolution of the market price and of fractions of agents when uncertainty about
future growth rates of dividends plays a role. Here we also relate the price dynamics generated
by our model, by the classical asset pricing model and by the model developed in Barsky and De
Long (1993), with respect to some well-know “financial anomalies”. Section 5 concludes.

2 The model

2.1 The asset market
We consider a market where shares of a financial asset are traded repeatedly in discrete time
periods. The market is populated by agents who believe that the discounted sum of expected
future dividends constitutes a “fair” price. As in GS, every agent can decide whether or not to
buy information about next period’s dividend. As a result, in every period the population of
agents is divided in two groups with different degrees of information concerning fundamental
variables. The current setting differs from GS in that, in our model, the asset represents a claim
on an infinite sequence of future dividends rather than on a single dividend, that is, the asset is
infinitely lived and does not perish at the end of the period. As a consequence agents, besides
forming expectations on dividends, must also form expectations on future asset prices. Another
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important difference with respect to the GS framework is that in our model agents are boundedly
rational. By this we mean that agents are not able to compute the equilibrium relationship be-
tween price and dividends that should arise in the market where informed and uninformed agents
operate. The aim of this Section is to characterize how, in this setting, the market price of an
asset/share, ��� , and the fraction of informed agents, ��� , co-evolve given agents’ expectations and
the dividend process ���	��
 . In order to arrive at such a relationship we first specify the underlying
assumptions of our model.

Assumption (i) The dividend process, ������
 , is stochastic. In the benchmark case �����
 is given
by a geometric random walk. At time � , ��� , is given by:�	������������� ������� � �"!
where � � �"
 is a sequence of independent, identically distributed (i.i.d.) random variables with
mean

�
and variance #%$& . This implies that the constant � �'�(���

is the long run growth rate of
dividends.

Assumption (ii) Agents know that the dividend is growing over time at a certain rate which
they estimate using past dividend realizations. We let

��)
denote their belief, or estimate, of the

long run growth rate of dividends. We assume that this belief is the same across agents and that
agents use it for predictions “as if” it is the true value in the dividend generating process. For the
moment we consider

�*)
as given and not time dependent. In Subsection 2.2 we will discuss how

agents actually form their beliefs,
��)

, regarding the long run growth rate
�
.

Assumption (iii) All agents are “fundamentalists” in the sense that they follow the present
value model, i.e. the discounted sum of all future dividends is their “fair” value of the asset.
The exact relationship between today’s price and tomorrow’s expected dividend depends on the
agent’s information about future dividends. The general information set contains past dividend
and price realizations and its exact expression is different for different agents’ groups. We denote
the information set at time � for group + as ,.-� . The fair value, i.e. the expected discounted sum
of future dividends, conditional on , -� is denoted by / -� :/ -� �10 2435 687 � ���:9 6� �;��<�� 6;=== , -�?>A@ (2.1)

The coefficient � �B�C<D�
is the discount rate or required rate of return. We assume that the discount

rate is the same across agents and that agents use the same discount rate for all future periods.
The latter assumption is made because we want to concentrate on sources of price fluctuations
given by agents’ interaction and agents’ learning rather than agents’ changing of their discount
rate. In general, the discount rate can be characterized as the sum of the risk free rate and the risk
premium, which depends on the risk preferences of agents. In this case, to state that agents use
the same constant discount rate means that agents have the same constant risk preferences. See
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Appendix A for a derivation of the risk premium in a context where preferences of the agents
are explicitly taken into account. We also assume that the discount rate is always bigger than the
agent’s estimate of the long run growth rate of dividends. Notice that together with assumption
(ii), assumption (iii) implies that agents use a static Gordon model to evaluate the asset.

Assumption (iv) At time � , each agent can decide whether to buy information about the value
of �	�:9B� or not to buy it and thus remain uninformed. As a result, in every period there are two
groups of agents having a different degree of information regarding the next realization of the
dividend process. At time � , the informed agents, group E , are fully informed regarding ���:9B� .
This implies that their current expectation of the � �1�

dividend is� ) F G� F �:9B� �1�	�:9B�H! (2.2)

where the superscript I�!JE stands for expectations of the informed agents. We assume that they
pay a fixed per period cost KMLON for this information. The uninformed agents, group P , do
not know �	�:9B� but can use public information, available in the form of realized dividends ��Q and
realized prices �RQ , SUTO� , to form their expectations, � ) F V� F �:9B� , about �	�:9B� . The superscript I�!WP
stands for expectations of the uninformed agents. For example, if uninformed agents would rely
solely on the public belief of the dividend growth rate, they could use � ) F V� F �:9B� �X� �Y�Z� ) � ��� . The
alternative which we consider here, is that they try to get additional information revealed by the
demands of informed agents through the current market price �R� . Uninformed agents consider a
relationship between the dividend and the price of the form:� )[F V� F �:9B� ��\ ) �]�[! (2.3)

where \ ) is agents belief, or estimate, of the market dividend yield, that is, the ratio between
future dividend and current price. As we have done for

� )
, we start with considering \ ) as

given and fixed. In Subsection 2.2 we will discuss how agents actually form their beliefs of the
market dividend yield. Finally, we let � denote the fraction of informed agents, so that

�_^ � is
the fraction of uninformed agents. A subscript � is added when we consider a time dependent� . We use time varying fractions only from Subsection 2.3 where we describe how �`� evolves
endogenously.

Assumption (v) At each time � , the ex-dividend market price of one share, �B� , is given by the
following market equilibrium pricing equation:�]���a��/ G� � � �b^ � � / V� ! (2.4)

where / G� and / V� are the “fair” value of the asset conditional on the information of the informed
and uninformed respectively, as derived below. Under this assumption the realized price today
is a weighted average, with weights being equal to the fraction of each agent type, of the agent’s
estimate of the share fair value. Although this market equilibrium pricing equation is admittedly
stylized, it can be derived by assuming that agents can choose to invest in a risky asset and in a
risk free bond and use a mean variance utility to decide how much of their wealth to allocate in
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each investment. If one starts from such a micro-foundation of agents’ demands, assumption �c/ �
translates into the assumption that markets clear as in a Walrasian framework. See Appendix A
for a derivation of (2.4).

Given assumptions �ed �R^ �c/ � the next step is to derive their implication on the price dynamics
in (2.4). First, we compute the fair value for the informed and for the uninformed agent.

Informed agents Assumption �cd�d � implies that informed agents, like all other agents, know
that the dividend is growing over time at a certain rate, which they assume to be equal to

��)
and which they use for predictions “as if” it is the true value of the growth rate of the dividend
process. Assumption �cdfd�d � implies that expectations of future share values are directly linked
to expected future dividends through equation (2.1). Assumption �ed�/ � implies that at time � the
informed agents know the value of ��:9B� so that their information at time � is given by , G� ������:9B�g!h���"! @�@i@ !����"!��]�����H! @�@i@ 
 . Hence their expectations of future dividends are:� ) F G� F �:9 6 �����:9B��� �;�j� ) � 6 ��� ! for dlk � @ (2.5)

Notice that since agents treat their estimate
��)

as if it is the true value of the growth rate of
dividends, they do not take into account possible estimation errors in their dividend predictions.
Plugging expectations (2.5) into (2.1) we arrive at the informed agents’ estimate of the value of
the stock, / G� � ���:9B�� <m^n� ) � @ (2.6)

The informed agents’ stock evaluation is thus in accordance with the Gordon model. Equation
(2.6) implies that informed agents are behaving similarly to so-called fundamentalists in the
interacting agents literature, see Hommes (2006) and Le Baron (2006) for recent surveys. In fact,
the informed agents’ fair value of the asset is proportional to the dividend payed at time � �o�

.
For this reason, we shall refer to / G� , the fair price of the informed agents, as the fundamental
price ��p� , that is, we define: � p� � ���:9B�� <m^q� ) � @ (2.7)

Notice that the value of the fundamental price depends on
� )

, the common agents’ belief of the
growth rate of dividends.

Uninformed agents We have assumed in �cd�/ � that boundedly rational uninformed agents try
to infer the value of �	�:9B� from the market clearing price ��� . In doing that, they use their model
(2.3) to explicit the relationship between the current realized market price �B� and expected future
dividends �	�:9B� . Combining this with assumptions �cd�d � and �cdfd�d � as we did for the informed agents
we obtain � ) F V� F �:9 6 �(\ ) �]�r� �;��� ) � 6 ��� ! for dlk � ! (2.8)
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which, using (2.1), and the uninformed information set , V� �s�����"!h�������g! @�@i@ !����"!��]�����H! @�@i@ 
 , gives
the uninformed agents’ estimate of the value of the stock:/ V� � \ ) �]�� <'^n� ) � @ (2.9)

Notice that also for uninformed agents, there is a correspondence with the literature on inter-
acting agents. In fact, our (“fundamentalists”) uninformed agents are behaving “as if” they are
chartists, that is, they use current prices to estimate the value they attach to the asset. This is
an important characteristic of our model and we anticipate its consequences here. Consider

� )
and \ ) as given. If at time � , \ )rt � <u^U� ) �

is bigger than one, uninformed agents behave “as if”
they are trend followers, and they drive prices well above the fundamental levels. In this case the
realized dividend yield, \D�:9B�l�a���:9B� t �]� , will become lower than � <4^v�*)w�

. The converse happens
when \ )wt � <x^Z� ) �uyz�

. In this case the uninformed agents behave “as if” they are contrarians.
Summarizing, the uninformed agents behave “as if” they are chartists but with a different trend
coefficient for different values of

��)
and \ ) .

Given the expectations of both types of agents, specified in (2.6) and (2.9), and the market
equilibrium pricing equation (2.4) we get,�]��� ���:9B�� <m^v� ) � �{� <m^n� ) �� <m^n� ) ^ � �Y^ � � \ ) � @ (2.10)

This equation shows that the realized price is proportional to the fundamental price � p� in (2.7) –
the same result one gets through the Gordon model – but that there is an additional behavioral
factor due to the presence of the uninformed agents trying to extract information from the market
price. In fact, one can interpret this as a generalization of the Gordon equation to a simple setting
where agents have different degrees of information.

Equation (2.10) can be written as a relationship between the realized dividend yield \��:9B�_����:9B� t �]� , agents’ beliefs
�*)

and \ ) , and the fraction of informed agents’ � :\|�:9B�}� � <'^q� ) �� ^ � �b^ � �� \ )�~ �o���c\ ) ! � ) !h� � @ (2.11)

We call the map � the feedback map because, given a fraction of informed agents � and common
beliefs about the growth rate of dividends

�])
, it establishes a feedback between expectations of

uninformed agents of the dividend yield and dividend yield realizations. Using the feedback map
defined in (2.11), it can be easily derived that, for any �����cN�! ��� , if \ ) � <R^u�)

then \��:9B�l� <B^x�*)
.

When this is the case, the agents’ belief regarding the dividend yield is self-fulfilling and
<m^n��)

is thus the rational expectation dividend yield. Notice that when \ ) � <�^�� )
, using equation

(2.10), one gets that the market price equals the fundamental price � p� which we have defined in
(2.7) as the fair value of the informed agents. For this reason we denote\ p � <'^n� )

(2.12)
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as the fundamental dividend yield. The rational expectations dividend yield is thus equal to the
fundamental dividend yield and, as we will specify later, it gives approximately the same price
process as derived by Timmermann (1993) or by Barsky and De Long (1993) who also consider
a model where agents are updating their estimate of the dividend growth rate

�
. The novelty here

is that, due to the presence of informed and uninformed agents, \	�:9B� may fail to be equal to \ p . In
particular the presence of uninformed agents generates a price that differs from the fundamental
price. In fact, equation (2.11) establishes a negative feedback system between the dividend yield
and its belief or estimate, since �B� t ��\ ) � ^ � �l^ � � t � y N . This implies that positive (negative)
deviations of \ ) from \ p , lead to negative (positive) realized deviations of \��:9B� from \ p . This
observation links our model to the classical cobweb model (see e.g. Ezekiel (1938) for an early
treatment). In fact equation (2.11) for the price dividend ratio is the same as the equilibrium
price equation in a cobweb model with linear supply and linear demand. The general asset price
dynamics will be more complicated however, since, according to (2.11), asset prices are also
driven by the learning of the growth rate of exogenous dividend process and by the evolution of
agents’ fractions.

2.2 Expectation formation
In this subsection we specify how agents form expectations on the long run growth rate of div-
idends and on the dividend yield. As far as the growth rate of dividends is concerned we have
assumed in (ii) that both informed and uninformed agents have homogeneous expectations on
the dividend growth rate. We follow Barsky and De Long (1993) and assume that agents use
adaptive expectations to estimate its long run value. Adaptive expectations are characterized by� )� F �:9B� �1� � )����� F � � � �Y^ � �4� ���������� ^���� @ (2.13)

where
�)� F �:9B� denotes the time � belief or estimate of the long run growth rate for period � ���

,
and where we refer to � as the memory coefficient specifying the rate at which agents discount
past information. Naive expectations are obtained in the special case ���oN and that

� )� F �:9B� is the
mean of all past observations of \ when �n���e� ^���� t � . Notice that when time-varying growth
rate beliefs, one has to update the definition of the fundamental price and of the fundamental
dividend yield from expression (2.7) and (2.12) to, respectively:� p� � �	�:9B�<m^n� )� F �:9B� (2.14)\ p�:9B� � <m^n� )� F �:9B� (2.15)

The same expectation technology used for the estimation of the future growth rate of dividends
is assumed to be used for the estimation of the value of the future dividend yield \ )

. Notice that
only uninformed agents need to form expectations about tomorrow’s dividend yield, as informed
agents know already the value of ��:9B� . Adaptive expectations for the dividend yield are specified
by: \ )� F �:9B� �a��\ )����� F � � � �b^ � � \|��! (2.16)
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where, as before, \ )� F �:9B� denotes the belief or estimate of the dividend yield of time � �q�
based on

the information up to time � , and the parameter �n�U��N�! ��� is, as � , the memory parameter, which
specifies the rate at which agents discount past information.

Substituting the time varying expectations of the growth rate of dividends and of teh dividend
yield into the feedback map (2.11) one obtains:\|�:9B�}�o���e\ )� F �:9B� ! � )� F �:9B� !g� � � � <'^n�)� F �:9B� �� ^ � �b^ � �� \ )� F �:9B� @ (2.17)

The previous equation evaluated at time � together with Eq. (2.16) gives the explicit dynamics
for the expectations of the dividend yield as a function of its lagged values, estimates for the
growth rate of dividends, and fractions of informed agents:\ )� F �:9B� � � �b^ � � � <m^v� )����� F � �� � � � � ^��� \ )����� F �[@
Using the feedback map (2.11) again one can rewrite this last dynamic expression in terms of
realization of the dividend yield instead of in terms of expectations of the dividend yield. expec-
tations. Changing variables from �e\ )����� F � !J\ )� F �:9B� � to �c\��"!J\|�:9B� � gives:\|�:9B�}� <m^q� )� F �:9B�� ^ ��� <_^n� )����� F � �� � � � � ^��� \|� ~ �o���c\|��! � )� F �:9B� ! � )����� F � � �

(2.18)

The updating map � establishes the dependence of the dividend yield on its lagged value, on
the agents’ beliefs of the long run growth rate of dividends at two subsequent dates and on the
fractions of informed agents � . Notice that the map � is linear in \�� . We study this map in the
Section 3.

Adaptive expectations As shown by Muth (1960) adaptive expectations are optimal when the
data generating process is a random walk plus i.i.d. noise. That is, adaptive expectations coincide
with rational expectations when the data generating process for the variable to be estimated, say� � , is given by � �%�1��� � � �b^j��� �����5 687 � ����� 6 (2.19)

where ����
 is an i.i.d. noise process and
� �o�fN�! ��� measures which fraction of the shock has a

persistent component. If one considers (2.19) as a data generating process, then adaptive expec-
tations follow from � )� F �:9B� �a0Y�r� � �:9B� � � � � )����� F � � � �b^j��� � �"! (2.20)

where 0b� is the mathematical expectation given the information at time � and where the parameter�
is what we have called memory.

Adaptive expectations for the growth rate of dividend are not consistent with the process
we assumed for the dividend. In fact, in (ii) the growth rate of dividends has only a temporary
component. But the inconsistency is rather small when the memory

�
is high. In fact, the effect

of the persistent component is very small with
�

close to
�
.
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Adaptive expectations for the dividend yield are also not consistent. or not rational in the
sense of Muth (1961), but we assume that agents use them for two reasons. First, empirical sup-
port in favor of the use of adaptive expectations for the dividend yield in present values mode has
been given by Chow (1989). Second, Brock and Hommes (1997) have shown that with endoge-
nously determined variables as price or dividend yield, if rational expectations come at a cost,
agents may switch continuously between costly rational expectations and simpler expectations at
no cost. As a result, when one models this expectation choice, convergence to a rational expecta-
tions equilibrium is not ensured. In order to keep the structural form of our model at its simplest,
we do not model agent’s choice of its expectation framework and assume that boundedly ratio-
nal agents use adaptive expectations. In fact adaptive expectation gives a reasonable trade off
between simplicity of use and implementation and consistency with the outcomes of the models.

2.3 Evolution of the fraction of informed agents
So far we have assumed that the fraction of informed and uninformed agents are fixed. In this
subsection we model how these fractions change over time. The driving force behind these
changes is the trade off between the cost of information and the precision of the dividend yield
estimator based on public information. Intuitively, given the cost of information, the more precise
the estimate of the dividend yield, the bigger the fraction of uninformed agents. Or, given the
precision of the dividend yield estimate, the higher the cost of being informed, and the smaller the
fraction of informed agents. The next assumption specifies how exactly we model this process.

Assumption (vi) The evolution of the fraction of informed agents � is modeled by the replica-
tor dynamics mechanism. The replicator dynamics can be motivated in the context of boundedly
rational agents who are learning and imitating which strategy to play in a strategic environment
(see e.g. Weibull 1995 and Binmore and Samuelson 1997). Furthermore, the replicator dynam-
ics arises naturally in a framework where the equilibrium pricing equation (2.4) is derived from
the maximization of a mean variance utility function. In fact, in this framework, as outlined in
Appendix � , � is related to the fraction of the total wealth possessed by the informed agents.
Although it is beyond the scope of this paper to consider other specifications of the dynamics
of � , we believe the result to be valid more generally than just for the replicator dynamics dis-
cussed here. Since the objective of the agents is to gather information about future dividends,
we assume that the success of a strategy is given by the squared forecast error of the dividend
predictor. Informed agents have zero forecast error. Uninformed agents try to forecast the future
dividends by estimating the dividend yield, so their squared forecast error for the realization \�� is�c\ )����� F � ^ \�� � $ . The costs of information are KmL�N per time step for the informed agents, and N for
the uninformed. As a result, we can define the fitness �B� of the strategies at time � . The fitness of
the strategy to buy information is: � G� � ^ K�! (2.21)

while the fitness of the strategy of remaining uninformed is� V� � ^ � \ )����� F � ^ \|�\ p� � $ @ (2.22)
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The time-varying fundamental dividend yield \ p� defined in (2.15) is introduced in the denomina-
tor of � V� for normalization. Given that dividend yield \�� has \ p� as reference value, this choice is
convenient because it implies that the two fitness measures coincide when, given K , a forecasting
error of � � N�KW  is made. For example, if Kb�aN @ � , the two fitness measures are equal with errors
of

�   around \ p� ,
In the presence of a time varying fraction ��� , Eq. (2.17) becomes:\|�:9B�}� <'^n�)� F �:9B���� ^ � �b^ �]� ��]� \ )� F �:9B�H@

We can use this relation between \��:9B� and \ )� F �:9B� and rewrite the fitness of the uninformed agents
(2.22) as: � V� � ^ � �c\ p� ^ \ )����� F � ��]����� \ p� � $ ! (2.23)

Given the fitness measure of both strategies we can now specify the dynamics for � . Under
replicator dynamics the fraction ��� of informed agents evolves according to�]���¡� �b^�¢D� �]�������e� G� �U£��������"� G� � � �b^ ������� � � V� �U£ � ¢� ! (2.24)

where the parameter
£

defines the speed of adjustment and
¢

is to be interpreted as a mutation
or experimentation parameter (see, e.g., Young and Foster (1991); Droste et al. (2002)). The
parameter

£
has to be taken larger than the cost K , £ L�K , to assure that the fitness measure of the

informed agent is positive which ensures that the fractions are always in the interval �¤N�! ��� . The
parameter

¢
is related to what we call evolutionary (or selection) pressure in the following way:

as
¢?¥ N the updating of the fractions is determined more and more by the selection mechanism.

On the other hand when
¢ � �

the evolutionary pressure reaches its minimum and both fractions
are

� t � , independently on the fitness of the two strategies. Based on the expressions (2.21) and
(2.23) the replicator dynamics (2.24) gives,�����¦� �Y^�¢|� �]������� ^ K �U£��]������� ^ K ��^ � �b^ �]����� ��§�¨h©ª � ¨r«ª¬|®°¯ ª± ª:¬D® ¨ ©ªj² $ ��£ � ¢� @ (2.25)

In Appendix B we present an interpretation of this formula starting from wealth evolution of
agents’ maximizing a mean variance CRRA utility function. We mention here that, in the frame-
work of Appendix B, the adjustment parameter

£
can be interpreted as a fixed profit, e.g. a profit

coming from investment in a risk free asset, that washes out differences in profits given by the
investment in the risky asset.

2.4 Market returns
To summarize, the full model developed so far is given by the following four equations
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� )� F �:9B� � � � )����� F � � � �b^ � � � � �;�j�]�[� � ^���� ! (2.26)\ )� F �:9B� � ��\ )����� F � � � �b^ � � \|��! (2.27)\|�:9B�³� <m^n� )� F �:9B���� ^ � �b^ ��� ��]� \ )� F �:9B� ! (2.28)���´� � �b^�¢|� ��������� ^ K ��£��]�����W� ^ K �}^ � �Y^ ������� ��§Rµ¶¨J©ª � ¨w«ª¬D®°¯ ª¸·± ª¬D® ¨ ©ª¹² $ �U£ � ¢� @ (2.29)

Equation (2.26) gives the common expectation formation regarding the growth rate of dividends�)
, Eq. (2.27) gives the expectation formation of the dividend yield \ )

by the uninformed traders,
Eq. (2.28) the market equilibrium pricing condition which fixes the dividend yield \ , and Eq,
(2.29) the dynamics of the fraction of informed agents � . The shocks and parameters are:

� � ,
the noise process driving the dividend growth;

�
, the long run dividend growth; � , the memory

agents use to estimate the future dividend growth; � , the memory agents use to estimate the
future dividend yield;

<
, the required rate of return;

¢
, the experimentation or mutation rate; K ,

the cost of information per time step;
£
, the parameter which regulates the speed of adjustment

of the replicator dynamics.
From the dynamics of the dividend price ratio and from the dividend process ������
 , one can

derive the asset price return. Since \D�:9B�l�a���:9B� t �]� , we haveº¸»�¼ �8�]� � � º»�¼ �c�	�:9B� ��^ º¸»�¼ �e\|�:9B� � @ (2.30)

Now, if we call ½�� , the log price return at time � , the previous equation gives:½W��� º¸»�¼ �8�]� ��^ º»�¼ �¾�]����� � � º¸»D¼ �f��� ��^ º»�¼ �f������� ��^ º»�¼ �e\|�:9B� �%� º¸»�¼ �e\|� � @
In (2.30), whenever \D� converges to its steady state value, that is, whenever \ )� F �:9B� converges to
the rational expectations value

<�^�� )� F �:9B� , the price follows �Rp� �X���:9B� t <u^�� )� F �:9B� , i.e. the time
varying correspondent of the fundamental price defined in (2.7). Notice that the fundamental
price depends on the changing estimates of the growth rate of dividends and that it is the same
price which has been derived by Barsky and De Long (1993). If, moreover,

��)� F �:9B� ¥ �
, the

fundamental price converges to the “correct” present value price, in fact \ p� ¥ <?^��
and � p� ¥���:9B� t � <m^q���

. If \|� fails to converge to
<_^n�

, deviations of the price from fundamental price can
have two origins. The first is the failure of the deterministic skeleton of the system specified in
(2.26-2.29) to converge to its fixed point, stated differently the fact that the adaptive expectations
do not converge to rational expectations. This is related to the work of GS and to the fact that
prices are not fully informative. The second possible reason is that, even if the system converges
to the fixed point, it could approach an equilibrium where

�])q¿� �
. This is a situation where

the fundamental price � p is not equal to the “correct” present value price ��:9B� t � <À^1���
. This
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is specifically relevant when the estimate
�])

is time varying so that the system in (2.26-2.29) is
stochastic. In what follows, we analyze these effects separately as well as their interplay. First,
in Section 3, we analyze the conditions of convergence of the deterministic system dynamics
of \ and � to their equilibrium values. Then, in Section 4, we complement this analysis by
investigating the effect of a time varying stochastic

� )
and how the two sources interact.

3 Informational differences
In this section we analyze the impact of informational differences alone on the dynamics of asset
prices assuming that

��)� F �:9B�}Á �)
, i.e. there is no learning of the divided growth rate. Technically,

we analyze the system of equations (2.26-2.29) when the memory parameter �C� �
. Without loss

of generality we consider only the case
� ) � �

. The generalization to
� ) ¿� �

is straightforward
and implies only a shift of the level of the steady state dividend yield from

<x^U�
to

<x^U� )
. To

simplify the notation, throughout the rest of the paper we write \ )� F �:9B� Á \ )�:9B� for the forecast of\|�:9B� made at time � .
When

�*)� F �:9B� � �
, we can reduce the system (2.26-2.29) to a two dimensional ( � -D) system in

the variables \ )�:9B� and �]� . The result is:\ )�:9B� � � �b^ � � � <m^q���������� � � � �]����� ^���]����� \ )� ! (3.1)�]�Â� � �b^j¢D� �]�����W� ^ K �U£���������� ^ K ��^ � �b^ �]����� ��§ µÄÃ ��Å · � ¨r«ª± ª¬|® µ¶Ã ��Å · ² $ �U£ � ¢� @ (3.2)

The parameters of the model are � , the memory of uninformed agents for their estimation of
the future dividend yield;

<
, the required rate of return;

�
, the growth rate of dividends;

¢
, the

experimentation level; K , the cost of information per time step;
£
, the speed of adjustment of the

replicator dynamics. Given the dynamics of �c\ )�:9B� !h��� � specified by (3.1-3.2), the dynamics of the
dividend yield \D�:9B� can be derived by using the feedback map � defined in (2.11). Before inves-
tigating the full dynamics of (3.1-3.2) it is instructive to consider the

�
-D system obtained when

the fraction ��� of informed agents is fixed to a constant value � . Proofs of all the propositions
can be find in the Appendix C at the end of the paper.

3.1 Dividend yield dynamics
Taking ��� Á � , Eq. (3.1) becomes:\ )�:9B� � � �b^ � � � <'^q���� � � � � ^��� \ )� (3.3)

Given the linearity of (3.3), the analysis of the dynamics is straightforward and it is possible to
compute the general solution of the difference equation. That is, given \ )Æ one can compute the
value of \ )� , for all � . The following proposition summarizes the results.
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Proposition 1. Given the memory parameter �¦�Ç�cN�! ��� , the fraction of informed agents �a��fN*! ��� , and the required rate of return
< L �

, we have:�cd � The solution of the difference equation (3.3) with initial condition \ Æ is given by:\ )� �¦�e\ )Æ ^ \ p � � � � � ^��� � � � \ p !
where \ p � <m^n� @�cdfd � If ��LÉÈ� Á �b^ �� ! (3.4)\ )� converges to the steady state \]p otherwise \ )� diverges to ÊxË .

Notice that whenever the system converges to its steady state \ p , also the dividend yield \ �
converges to \ p through the feedback map (2.11). At the steady state \ p the price equals the
fundamental price � p� defined in (2.7) and thus fully reveals the information concerning the future
dividend. The shaded area in Fig. 1 shows the stability region of (3.3) in the parameter space�f��!g� �

whereas the white area shows the unstable region. The shaded area is divided in two
different regions with different gray scales. In the lighter region, the convergence of the expected
dividend yield to its the steady state \ p is oscillatory, whereas in the darker, the convergence is
monotone. Notice that the border between the stability and the instability region is characterized
by oscillatory behavior of the expected dividend yield \ )� , and thus of the realized dividend yield\|� too. This implies that failure of the price to fully reveal the fundamental information should be
characterized by price fluctuations with negative autocorrelation. This statement is made more
precise in the analysis of the � -D model that follows.

3.2 Dividend yield and fractions dynamics
In general, the fraction of informed agents ��� is time dependent and the dynamics of the dividend
yield and of the fraction of informed agents is nonlinear. The overall system is given by (3.1-3.2).
We use local stability analysis to characterize the behavior of the state variables �e\ )� !g�]� � near the
steady state of (3.1-3.2). The following proposition characterizes the steady state of the system
and its local stability.

Proposition 2. Given the memory parameter �n���fN�! ��� , the experimentation level
¢ ���cN�! ��� , the

ratio between the speed of adjustment and the cost of being informed, Ì , such that ÌÍ� £ t K?L �
and the required rate of return

< L �
, we have:�cd � The point �c\ p !g� p � where \ p � <m^v�

and � p � � ^�¢Y� ��Ì ¢'^1Î ^'Ï Ì ¢Y� �f� ^�¢�� ��Ì ¢|� $Ð ! (3.5)
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is the unique steady state of the system (3.1-3.2). Moreover, � p �U�fN�! � t � � .�cdfd � The Jacobian of (3.1-3.2) at the steady state is diagonal and given byÑ;Ò µÄ¨ © F ± © · � ÓÔÕ � � � p ^��� p NN � �4^�¢|� Ì��fÌ ^�����fÌ ^ � p � $
Ö�×Ø @ (3.6)

If ¢ LsÈ¢ Á � ��� � ��;� $"Ù�Úµ �"� Ù · � � ��� � ��;� $"ÙiÛµ �"� Ù ·8Ü ! (3.7)

the steady state �c\ p !h� p � is locally stable. The previous condition corresponds to the stability
condition (3.4) of the

�
-D dynamical system (3.3). That is whenever

¢ L È¢ then� p L È� @
and vice-versa.
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Figure 1: Left panel: Stability region for the
�
-D dynamical system in (3.3). The expected

dividend yield converges to the steady state \ p � <�^Ý�
only for values of ( �;!g� ) in the shaded area.

In the darker region the convergence to \ p is monotone, whereas in the lighter the convergence is
oscillatory. Right panel: Stability region in the � -D dynamical system in (3.1-3.2) as a function of
the mutation rate

¢
and memory � , when ÌA� £ t K�� � N . As in the left panel, the continuous line

marks the border of the stability region, and the dotted line marks the border of the region where
the convergence of the expected dividend yield to \ p is monotone (darker region) or oscillatory
(lighter region).

The local stability condition (3.7) is represented in terms of the parameters �f�;! ¢D� in the right
panel of Fig. 1 for ÌA� £ t Kb� � N . In the white area the steady state �c\ p !h� p � is unstable, while in
the shaded area the steady state is stable. Since when the expected dividend yield \ )� converges to\ p also the realized dividend yield \D� converges to \ p , stability of the steady state �c\ p !g� p � implies
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convergence of teh price to the fundamental price � p� and thus to a fully informative price. This
result is not contradicting that obtained by GS, which is that markets cannot be informationally
efficient. In fact it has been obtained by distorting the dynamics of the fraction of informed
agents, i.e. by assuming a sufficiently large experimentation rate

¢
. Under this condition there

always is a fraction of agents that are prepared to buy fundamental information. If, on the other
hand,

¢ �ÞN , then � p �ÞN and \ p is not defined. In general, for any �ß�´�cN�! ��� there exists
a sufficiently small mutation rate such that the prices are not fully revealing and the system is
unstable. The definition of È¢ in eq. (3.7) of Proposition 2 shows that, for a given � , the stability
region of the system (3.1-3.2) shrinks, when the cost of information K increases, and expands
when the speed of adjustment

£
increases.

What happens to the dynamics of the expected dividend yield and of the fraction of informed
agents when the steady state is unstable? In order to answer this question we analyze the global
dynamics of the system (3.1-3.2) for small experimentation levels,

¢vy È¢ . When the stability
conditions (3.4) and (3.7) do not hold, whereas in the

�
-D system the expected and realized

dividend yield diverge unboundedly and unrealistically, in the � -D system our simulations show
the emergence of bounded aperiodic cycles. The top left and top right panels of Fig. 2 show
the typical evolution of the uninformed agents’ expected dividend yield, \ )

, and of the fraction
of informed agents, � , respectively. At time �b�sN , the fraction of informed agents is above the
dotted line, which marks the value È� in (3.4) and gives the stability condition for the steady state
of the \ )� dynamics. As a result, at �à�áN both the value of \ )� and, through (2.11), the value
of \|� , are close to their steady state value, \ p . This implies that the price is close to being fully
informative, there is no advantage in buying information so that the fraction of informed agents
decreases. This process continues until the fraction of informed agents is smaller than the valueÈ� . At this moment there are so few informed agents that the asset price starts to diverge from the
fundamental. The dynamics of the expected dividend yield \ )� is unstable and \ )� starts to diverge
from the steady state \ p . The fraction of informed agents continues to decrease until the price
carries so little information about � p that informed agents are better off. Eventually, it gives a
higher fitness to pay the cost of being informed than to use a freely available estimate with a
large error. As a result, the fraction of informed agents grows sharply, see e.g. the top right plot
around period �A�ãâ|N . The fraction of informed agents reverts to a region where the price is
sufficiently informative so that \ )� returns to values close to \ p . As time flows the process repeats,
with � decreasing again, and so on and so forth. The left and right bottom panels of Fig. 2 show,
respectively, the dynamics we have just illustrated in the �c\ ) !h� �

space and the corresponding
dynamics of the log price as compared to the log fundamental price.

The numerically obtained phase plots shown in Fig. 3 suggest that the fluctuations of \ )
and� just described, are associated with a so-called homoclinic bifurcation. Similar phenomena are

encountered in other multidimensional nonlinear systems and emerge from the interplay between
local instability and global stability of the dynamics. Brock and Hommes (1997) and Droste et
al. (2002) present other economic frameworks where homoclinic bifurcation arise. They also
offer detailed discussions of the mathematical aspects behind these interesting phenomena.

Before turning to the economic interpretation of the fluctuations and to the comparison of
our results with those of GS, it is instructive to characterize the convergence of the fraction of
informed agents in the stability region. Close to the equilibrium � turns out to change very
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Figure 2: Top panels: time series for the expected dividend yield \ )
(left panel) and the fraction

of informed agents � (right panel) produced by (3.1-3.2). In the top right panel the dotted line
corresponds to È� in (3.4), that is to the stability value of � , whereas the continuous line corre-
sponds to the steady state � p given in (3.5). In the bottom left panel, the state space representation
of the previous two times series. In the bottom right panel, the log price dynamics derived form
the dynamics of \ ) and � . Fundamental prices are given by the dotted line and realized prices
by the continuous line. Notice that the two price series levels should be read using two different
scales. The left scale gives the value of log prices whereas the right scale gives the value of
fundamental log prices. The dividend process is characterized by # & �äN @ N	� . Parameter values
are �å��N @Äæ�æ , K��aN @ � ,

£ � �
(so that ÌÀ� £ t Kb� � N ),

< �aN @ � ,
� �aN and

¢ ��N @ N�NDN	â�ç�â .

slowly.

Proposition 3. Given a memory parameter �a�a�fN�! ��� , an experimentation rate
¢ �o�cN�! ��� and

a speed of adjustment
£

larger than the cost of information,
£ LÉK , if we call è $ the eigenvalue

characterizing the dynamics of � in a neighborhood of �e\ p !g� p � , we have� L(è $ Lé� �4^�¢|� � �b^ �Ì � @
19



 0.002

 0.005

 0.008

 0.011

 0.014

 0.017

 0.02

 0.0994  0.0996  0.0998  0.1  0.1002  0.1004  0.1006
ye

t

λt

 0.002

 0.005

 0.008

 0.011

 0.014

 0.017

 0.02

 0.0994  0.0996  0.0998  0.1  0.1002  0.1004  0.1006
ye

t

λt

 0.002

 0.005

 0.008

 0.011

 0.014

 0.017

 0.02

 0.0994  0.0996  0.0998  0.1  0.1002  0.1004  0.1006
ye

t

λt

 0.002

 0.005

 0.008

 0.011

 0.014

 0.017

 0.02

 0.0994  0.0996  0.0998  0.1  0.1002  0.1004  0.1006
ye

t

λt

Figure 3: Phase plot of the expected dividend yield \ ) and the fraction of informed agents �
produced by the system of difference equations (3.1-3.2). Parameter values are ���êN @¶æDæ , Kë�N @ � ,

£ � �
(so that Ì.� £ t K?� � N ),

< �¡N @ � and
� �sN . Top left panel:

¢ �¡N @ N�N�N�ì	çDâ , top right
panel:

¢ �oN @ N�N�N�ì�ì . Bottom left panel:
¢ �oN @ N�N�N�ì	�Dâ , bottom right panel:

¢ �oN @ N�N�N	âDç�â . At an
intermediate value of

¢
a homoclinic bifurcation occurs.

This proposition shows that when the experimentation rate
¢

is small and the ratio between
the speed of adjustment and the cost for information, Ì , is big, the value of è $ is very close to one.
As a result, when the system is stable, changes in the value of the fraction of informed agents �
are very slow, and hence � is very persistent. We will find confirmation of this statement in the
next Section, when we feed our system with exogenous shocks on the dividend growth rate.

3.3 Economic interpretation
The use of rational expectations in a negative feedback framework poses puzzling consequences
when one endogenizes the dynamics of the fraction of informed agents � . In fact when the
information cost is positive, if agents had rational expectations the price would fully reveal the
available information about future dividends and nobody would pay for information. This implies
that the fraction of informed agents would tend to zero. In the limit the price would not contain
information about the dividend anymore. This is the same paradox as found by GS, who also
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consider an asset pricing model where agents can either buy information on fundamentals or try
to extract such information from the asset price. In a repeated single period model with rational
agents, they show that there cannot exist an equilibrium value of the fraction of informed agents
for which the price fully reveals the information about the future dividend. If an equilibrium
existed then nobody would pay for the information and prices could not possibly reveal any
information. They also show that there exists a rational expectations “equilibrium degree of
disequilibrium” where prices fail to be fully informative. In order to get this result they need
two key assumptions: � ��� the supply of shocks is noisy (this is equivalent to saying that there
are noisy traders in the market) and �f� � the informational content of the dividend signal is not
perfect. Without these two assumptions, an equilibrium degree of disequilibrium would not exist.

Our model is inspired by that of GS but with three important differences. First, our agents
are not rational but boundedly rational, that is, they do not use rational but adaptive expectations.
Second, we consider a multi period model where future returns are determined by capital gains
in addition to dividends, and agents form expectations about both future prices and dividends.
Third, the fraction of informed and uninformed agents are dynamic variables of our model. By
assuming that agents have boundedly rational expectations and that fractions are endogenously
determined, we offer another source for balancing the cost of information and the informational
content of the price namely the learning process of the uninformed agents. In our framework we
obtain a “dynamic equilibrium degree of disequilibrium” due to endogenous price fluctuations
produced by the interaction of boundedly rational agents.

De Fontnouvelle (2000) and Goldbaum (2005) are earlier contributions where bounded ra-
tionality and learning offer a different explanation for the existence of an equilibrium degree of
disequilibrium. Their framework differs from ours in many ways, most importantly in that they
consider a dividend process which follows a random walk rather than a geometric random walk
as we do here. Furthermore their resulting systems of the joint evolution of the asset price and the
fractions of agents is fairly complicated so that their analysis is performed only via simulations.

An important characteristic of our “dynamic equilibrium degree of disequilibrium” is that
the system adjusts itself to a pattern of a-periodic oscillations where the prices are not fully
informative. In our framework the price informational content is time varying and switches
continuously between being nearly fully informative and hardly informative. The economic
intuition behind this is quite clear: when the fraction of informed agents is high enough, we
are in a region where the adaptive expectations of boundedly rational uninformed agents are
converging to rational expectations and the price is close to being fully informative. This pushes
down the fraction of informed agents. As a result, with only few agents being informed, the
uninformed agents using adaptive expectations do not converge to rational expectations anymore
and the price starts to diverge from its fundamental value and, as a consequence, carries little
information. This creates incentives to buy information and pushes the fraction of informed
agents up again, and the story repeats. This trade-off between local instability (when too few
agents are informed) and global stability (when many agents are informed) leads to complicated
dynamic behavior. In our model, the “dynamic equilibrium degree of disequilibrium” is therefore
a time-varying learning equilibrium where prices fluctuate between being close to fully revealing
and being uninformative, and agents switch between costly information gathering and free riding.
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4 Informational differences and parameter learning
In the previous section we have assumed that the agents’ estimate of the dividend growth rate is
constant. As a result, the equation for the dividend yield is fully deterministic. In this section
we analyze the simultaneous impact of informational differences and of assuming that agents
are learning the growth rate of dividends as new information about the fundamentals becomes
available. As a result we have to deal with a stochastic system. A similar analysis has been
performed by Barsky and De Long (1993) and Timmermann (1993), among others, in a context
where there are no informational differences among agents. In particular Barsky and De Long
(1993) also assume that agents use adaptive expectations to estimate

�
. Recalling the results

from Section 2, adaptive expectations are specified by (2.13) which, when the dividend follows
a geometric random walk with innovations � �;�j�]�[� � gives:� )�:9B� �1� � )� � � �b^ � � �r� ���j��� � � ^���� @ (4.1)

This stochastic equation, together with the evolution of the dividend yield, its expectations, and
the fraction of informed agents as specified in (2.26-2.29), lead to a stochastic version of the
deterministic skeleton (3.1-3.2) namely� )�:9B� � � � )� � � �b^ � � � � �;����� � � ^���� ! (4.2)\ )�:9B� � � �b^ � � � <m^v�*)� ��]����� � � � �]����� ^���]����� \ )� ! (4.3)�]�´� � �b^j¢|� �]�����W� ^ K �U£��]������� ^ K ��^ � �4^ �]����� � § µÄÃ ��Å «ª · � ¨w«ª± ª¬|® µ¶Ã ��Å · ² $ ��£ � ¢� @ (4.4)

Shocks � � ��
 on the growth rate of dividends are the stochastic component that drives the co-
evolution of agents expectations of the growth rate of dividend and of the dividend yield, and
of the fraction of informed agents. Given the evolution of the expected growth rate of dividend,�)�:9B� , of the expected dividend yield, \ )�:9B� , and of the fraction of informed agents, �R� , the dividend
yield itself, \|�:9B� , is set by the feedback map (2.11). Before we start with the analysis of the
impact of shocks on the dynamics of (4.2-4.4), we show that our model contains two important
benchmarks.

Classical Asset Pricing model The first benchmark is the classical asset pricing model, which
assumes that all agents know the long run dividend growth rate

�
, and that agents use rational

expectations. In this case, if some agents are informed about �*�:9B� , the market price and the
market dividend yield are given by:� p"p� � ���:9B�<m^q� ! \ p"p�:9B� � <m^n� @ (4.5)

Previously we have called the price � p"p� the “correct” present value price. Notice that the classical
asset pricing model corresponds to our model if we assume that agents have rational expectations
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and use the correct long run dividend growth rate
�
. Alternatively the classical asset pricing

model corresponds to our model when all agents are informed and use the correct long run
dividend growth rate.

Barsky and De Long model The second benchmark is the model proposed by Barsky and
De Long (1993). They consider agents without informational differences who have to form
expectations about the long run growth rate

�
. In their case the price and the dividend yield are

given by: � p� � ���:9B�<'^q� )�:9B� ! \ p�:9B� � <'^n� )�:9B� ! (4.6)

where
�*)�:9B� is given by adaptive expectations as in Eq. (4.1). These are respectively the funda-

mental price and the fundamental dividend yield defined in (2.14) and (2.15). For a given
�R)�:9B� ,\*p�:9B� is also the steady state of the system where uniformed agents are learning the value of the

dividend yield, i.e. to the point where price are fully informative. The model of Barsky and De
Long (1993) thus corresponds to our model under the assumptions that all the agents use rational
expectations or that all agents are informed.

A way of comparing our model with these two benchmarks is to write an evolution equation
for the dividend yield as a function of lagged dividend yields and shocks on the growth rate of
dividends for each model. In the classical asset pricing model the dividend yield is constant and
given by \ p"p � <�^C�

. In the Barsky and De Long model, using (4.6) together with (4.1), one can
derive: \ p�:9B� �¡� �4^ � � � �;�U<D��� �R\ p� ^ � �b^ � � � ���j��� � � @ (4.7)

That is, the dividend yield follows an AR(
�
) process with shocks given by the shocks � � �"
 on the

growth rate of dividends. The memory parameter � is related to both the AR(
�
) coefficient and

the variance of the innovations, � �B^ � � $ � ���A��� $ # $& . The mean of the process is independent of the
memory parameter and equal to the constant classical asset pricing dividend yield \ p"p � <x^��

.
In our model, fixing for the moment the value of � , the map � defined in (2.18) would give give:\|�:9B�}� � < � ^v�*)�:9B� ��^ ��� < ����� ^n�)� �� � � � � ^��� \|� @ (4.8)

This equation expresses that, when the fraction of informed agents fixed at � , the dividend yield
follows an AR(

�
) process with shocks that are correlated with the shocks of the growth rate of

dividends. When �Z�ß� , that is, when agents use the same memory parameter to estimate the
growth rate of dividend an the dividend yield, Eq. (4.8) has a simple appealing formulation:\|�:9B�}� � �Y^ � � �r� �;�U<D��^ � ���j��� � � �� � � � � ^��� \�� @
As for the dividend process implied by the Barsky and De Long model in (4.8), the long run mean
of the dividend process implied by our model is given by the classical asset pricing dividend yield\ p"p . If we define ��íe�f� � � �4^ � �b^ � � t �Í�(� ^ � �Y^ � � �4^ �� ! (4.9)
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we can rewrite (4.8) as\��:9B�l�¡� �b^ ��íc��� �w� � ����<��%� �Rí°��� � \�� ^ � �b^ �Rí°��� �w� � �;����� � � @ (4.10)

The result is that, when �C�1� , our model specified by Eq. (4.10) and the model of Barsky and De
Long (1993) specified by Eq. (4.7) differ only in the value of the memory parameter � . Since �
is the real memory agents use to discount new information, we can refer to � í ��� �

as the effective
memory. The definition (4.9) shows that the effective memory has two components, one being
given by the real memory and the other by the effect the action of uninformed agents imposes
a negative feedback on the evolution of \ . This second effect becomes less important as more
informed agents are present in the market. The general result is that � í ��� �

in (4.9) is an increasing
function of � with � í �f� � T�� for all � , and � í � ��� �1� . That is, the presence of uninformed agents
is equivalent to the all agents being informed and using an effective memory which is lower then
the real memory agents use. The value of � í determines both the AR(

�
) coefficients and the

variance of the shocks but not the long run mean which is always \ p"p � <Ý^n�
. In particular the

lower the effective memory, the higher the impact of the shocks on the dynamics of the dividend
yield and the faster the reversion of the process to its mean. That is, a lower effective memory
creates a bigger short run effect and a smaller long run effect. Also, since the effective memory� í is a function of � , our model allows for variation of the memory parameter as the fraction of
informed agents � varies. Changes in � have an impact on � í and thus on the variance of shocks
and on the speed of convergence. In what follows we explore the importance of both the effective
memory being lower than the real memory and the effective memory being time varying on the
dynamics of the dividend yield implied by our model (4.10) compared to its two benchmarks in
(4.5) and (4.8).

4.1 Nonlinear mean reversion
Our model (4.10) clearly differs, both structurally and regarding the parameters, from that one
of Barsky and De Long in (4.7) when the fraction of informed agents is time varying. If this is
the case, our model implies an AR(

�
) for the dividend yield where both the rate of convergence

of the dividend yield to its mean and the variance of shocks are time varying. This consideration
links our model to the econometric analysis of nonlinear mean reversion that has recently been
proposed to characterize the fluctuations of stock indices. In fact by using the fact that � p"p�ãÁ���:9B� t � <�^����

, i.e. the price implied by model (4.5), and defining � �4�z\��:9B� t � <u^����
, given the

definition of the dividend yield one can write:º»�¼ �8��� � � º¸»D¼ �f���:9B� ��^ º»�¼ �c\��:9B� � � º¸»D¼ �8� p"p� ��^ º¸»�¼ � � � � @
If � � is close to its long run average of

�
one can rewrite the previous expression and expand the

logarithm around one. Using the variable î���� �4^ � � one getsº¸»�¼ �¾�]� �}ï º¸»D¼ �8� p"p� �%� î��[! (4.11)
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where the dynamics of îi� can be easily derived using its definition in terms of � � , the definition
of � � and Eq. (4.10). The resulting dynamics of the component î�� of the log price is given by:î����1��íe�f��� � î������ � � �b^ � í ���]� �r� � �;�j�]�� <m^v�]� � � ����� ^���� @ (4.12)

This equation shows that we have a model whose realized log price in (4.11) is the sum of a
persistent component

º¸»�¼ �¾� p"p� �
, which follows a random walk with drift, and of a temporary com-

ponent, î�� , which follows a stationary autoregressive process (4.12) with a time-varying AR(
�
)

coefficient � í ���]� � . Empirical investigation of the properties of stock prices are in accord with
this statement. Both Gallagher and Taylor (2001) and Manzan (2003) reject the null hypothesis
that the temporary component in a mean reversion model follows a stationary process with fixed
parameters. In particular Gallagher and Taylor (2001) show that quarterly data of the logarithm
of the dividend yield of the index SP500 are well fitted by an ESTAR(

Ð
) (Exponentially Smooth

Transition AR) ARCH(
�
) model whose two regimes have AR(

�
) coefficients equal to N @ çD� andN @ �DN respectively. As the model of Barsky and De Long (1993) suggests, the fact that the divi-

dend yield follows an autoregressive process might be related to the agents’ learning of the model
parameters. In addition to this effect, our model suggests that changing “learning” coefficients
and heteroskedasticity can be related to agent interaction. In fact, both the AR(

�
) coefficient and

the shocks variance in (4.12) are a function of � í ���]� � which is a nonlinear function of the time
varying fraction of informed agents ��� .

It is beyond the scope of this paper to calibrate our model to reproduce the stock prices evolu-
tion given the historical dividend process. Our theoretical model is based on several simplifying
assumptions and in particular on an ad hoc dynamics of the fraction of informed agents � . Nev-
ertheless we find it instructive to note that the nonlinearity in a mean reversion model can be
related to what in general may be referred to as agents’ interaction, which in, our case, is trig-
gered by informational differences. That agent interaction can be responsible for nonlinearity in
the behavior of stock prices is also argued by Boswijk et al. (2005), who estimate a modified
version of the model of Brock and Hommes (1998) using yearly data of the index SP500. Fur-
ther efforts to characterize the effect of informational differences, for example to link it to other
observable characteristics as the volume of transactions, might offer insight to the design of new
econometric tests for the evolution of stock prices.

4.2 Simulation study
In presenting the qualitative effect of the shocks on the growth rate of dividends on the dividend
yield and fraction dynamics, we proceed by analyzing the impact of a single shock

� � , and then
by analyzing the cumulative impact of a sequence of shocks � � �"
 . We present results not only for
the dividend yield and price generated by our model, but also for the dividend yields and prices
generated by the classical asset pricing model (4.5) and by the model of Barsky and De Long
(4.6). In addition we also present results for a model similar to that of Barsky and De Long with
the difference that the real memory is taken as the average memory of the time varying effective
memory generated by our model. We name this model as “modified” Barsky and De Long model
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and its series of prices and dividend yields as � pðgñ and \ pðgñ . We use the “modified” Barsky and De
Long model to appraise the role of time variability of the effective memory. We simulate all the
models with dividends generated according to Assumption �ed � , that is, �*�:9B�à�á���r� �m����� � �:9B� ,
where � � �"
 is a sequence of i.i.d. log normal shocks with mean zero and variance # & .

It is instructive to start the analysis by comparing the effect of a single shock on
�

and on
the realized price that is respectively on the price ��� implied by our model, on the fundamental
price � p� implied by the model of Barsky and De Long, and on the “correct: present value price
implied by the classical asset pricing model. Fig. 4 shows that in both cases there is an initial
overreaction followed by convergence to the equilibrium value, which is given by � p"p , the price
implied by the classical asset pricing model.
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Figure 4: Effect of a single shock. Before and after the shock,
� �sN . The shock is

��ò �b�ÉN @ N � .
Left panel: log prices as a function of time. The time series � p"p gives the value of the log price as
implied by the classical asset pricing model (4.5). The time series � p and � give respectively the
value of the log price as implied by Barsky and De Long model (4.7) and by our model (4.2-4.4)
respectively. The time series � pðgñ gives the log price implied by the “ modified” Barsky and De
Long model (4.7) when �ó�1� í �f� Æ � , where � Æ is the fraction of informed agents before the shock.
Right panel: evolution of the effective memory � í . The parameter values are ���O�É�ON @Äæ�æ ,¢ ��N @ N	� , Kb�aN @ � and

£ � � @ N .

Since, for � yo�
, the effective memory � í is lower than the real memory � , the variance of the

shocks is larger in our model than in the model of Barsky and De Long, so that the overreaction
is more pronounced. At the same time, when � í y � , the value of the autoregressive coefficient is
closer to zero so that convergence is faster. The overall effect is that the shock has a higher short
run impact but a shorter half life for � than for � p . The right panel of Fig. 4 shows the response of
the effective memory � í to changes in � . From the Jacobian of the � -D system (see Proposition� ) we know that changes in \ only have second order effects on � , and as a result changes in �
are negligible in the short run. But, from Proposition ô , we also know that the eigenvalue è $ is
close to one so that changes in � are very persistent. Both results are confirmed by the changes
in � í shown in the right panel. A confirmation of the fact that one shock has no considerable
consequence on changes of � í comes from the time series for � pð ñ shown in the left panel. The
price � pðgñ is the price obtained using the “modified” Barsky and De Long model, that is equation
(4.7) with �C�1� í ��� Æ � , where � Æ is the value of the fraction of informed agents before the shock.

26



The overall comparison of the dynamics of � , � p and � pðgñ shows that in the single shock case the
fact that the effective memory is lower than the real memory plays an important role whereas the
fact that the effective memory is time varying is negligible, i.e. � is close to �`pðgñ . Notice also that
with informed agents in the market, the price anticipates the shock on the dividend, i.e. the price
takes into account the change in the dividend before such a change is realized and much before
such change has an effect on the value of the effective memory.

We now turn to investigating the effect of a sequence of shocks. Figure 5 shows the impact of
a sequence of âDN�N i.i.d. shocks � � 
 . The long run growth rate of dividends,

�
, and the variance of

the growth rate shocks, # $& , are taken in accordance with historical quarterly data of the S õ P500
index for the period 1880-20051. The discount rate

<
is taken such that \ p"p �zN @ N�â , that is the

price implied by the present value model is �|N times the value of the dividend. If we think of
quarters, âDN�N dividends correspond to

� ��â years. The top left panel shows the time series of the
dividend yield \ generated by our model whereas the right panel shows the time series of \ p
generated by the model of Barsky and De Long. In both cases the horizontal line represents the
long run mean \ p"p � <�^��

. The same results as for a single shock emerge: the dynamics of
the dividend yield is less persistent in our model where the fraction of informed agents is time
varying and smaller than in the model of Barsky and De Long (1993). Also, deviations from\ p"p are larger. The central and bottom rows offer a comparison of the systems in terms of log
prices. How important is the fact that the effective memory is time varying? The right panel of
Fig. 6 shows the changes in the effective memory for the same simulation run. These changes
are due to changes in the fraction of informed agents � via the transformation equation (4.9).
As a confirmation of our previous results and of our theoretical analysis, changes in � í (that is
changes in � ) are rather persistent. The left panel of the same figure shows deviations of log
prices generated by our model and log prices generated by the “modified” Barsky and De Long
model. We call this last series \ pð ñ . Notice that deviations of up to more than ten percent arise.
Our conclusion is that when subsequent shocks are present, both the effective memory being
lower than the real memory and the effective memory being time varying play an important role.
Naturally, these properties are dependent on the choice of updating mechanism for ��� and hence
of the fitness measures as presented in Subsection 2.3. We do not claim that the mechanism
we propose here to characterize the changes in the fraction of informed agents is more realistic
than others. We merely offer a qualitative argument to show that informational differences might
explain the nonlinearity in the mean reversion that has been shown to exist in the empirical
literature.

Another way of comparing the various models is to check for correlation in the time series of
returns produced by the evolution of \ p and \ . The left panel of Fig. 7 shows the autocorrelation
of the asset log return series ö'� , ö_��� º¸»D¼ �8�]� � ��� ��^ º»�¼ �¾�]����� � ! (4.13)

for a typical run of our model (4.2-4.4). The autocorrelation of returns shows that our model
and the “modified” Barsky and De Long model have higher short term autocorrelation and lower
long term autocorrelation. Such results are in accordance with the results shown in the left panel

1Source of the data is Shiller database available from R. J. Shiller homepage.
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Figure 5: Top left panel: time series of the dividend yield \�� generated by our model (4.2-4.4)
(solid line) compared with the benchmark \�p"p (4.5) (horizontal dotted line). Top right panel: time
series of the dividend yield \ p as in Barsky and De long (4.7) (solid line) compared with \ p"p .
Middle left panel: logarithm of price corresponding to \ ,

º»�¼ �¾� �
(solid line), and logarithm of the

price corresponding to \ p"p , º¸»�¼ �8� p"p � (dotted line). Middle right panel: logarithm of price implied
corresponding to \ p , º¸»�¼ �¾� p � (solid line), and logarithm of the price implied corresponding to \ p"p .
Bottom panels gives the deviations of the log prices series shown in the middle panels. Values
of parameters are �ê�³���¹N @Äæ�æ ,

£ � �
, Kå�÷N @ � ,

¢ �¹N @ N	� (these three parameters imply� p ï N @ N æ ), # & ��N @ N Ð ,
� �1N @ N�N�ô . The discount rate is

< ��N @ N	â ���
.

of Fig. 4: if the effective memory is lower than the real memory, shocks have a higher short run
impact but a shorter half life for � then for � p .

A test that has been used in the literature to evaluate the statistical importance of departure
of the models from a random walk with drift is the variance ratio test. The variance ratio has
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Figure 6: Left panel: values of the effective memory � í . Right panel: deviations of the two series
of log prices generated by our model \ and by the ”modified” Barsky and De Long model \ pøð ñ .
Deviations are due to fluctuations of � í around its mean value, È� í �aN @¶æ ì Ð�Ð . Other parameters as
in Fig. 5, in particular the real memory is �.��N @Äæ�æ .

been used by Poterba and Summers (1988) to appraise the mean reversion properties of stock
prices. Under the null hypothesis that log prices follows a random walk (possibly with drift) the
variance of the series of returns in (4.13) is a linear function of the return time span. Results of
the variance ratio test for our model and for its restrictions are given in the right panel of Fig. 7.
The results suggest that not only the fact that the effective memory is lower than the real memory
affects the statistical time series properties of lagged returns, but also that the effective memory� í �f� �

is time varying. Further research will be devoted to investigating these issues in greater
detail and related them to the statistical properties of financial markets empirical returns.
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Figure 7: Left panel: autocorrelation of the log return tme series for a typical run of our model
(4.2-4.4). Right Panel, variance test of log lagged returns. /B�fùú� � �ê�c# $ �fömû � � t ùú� � t �c# $ �cö'ü¨ � t Ð �
where #�$��fö ü¨ � �¦N @ NDN�ô	â�â � and ö û � is the total return over a period ùú� generated by the model
in system (4.2-4.4). In both plots three lines refer to data generated with our model, \ , to the
model of Barsky and De Long in (4.7), \ p , and to the “modified” Barsky and De Long model.
Parameters are the same as for Fig. 5. Both panels refer to a simulation of �DNDN�!hN�N�N periods.
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5 Conclusion
We have built a simple model of an asset market where agents are boundedly rational and can
choose between different degrees of information regarding future dividends. As far as the the-
oretical guidelines behind our model are concerned, we show that our model naturally and par-
simoniously extends and links many other contributions in this fields. In particular, we refer to
papers that concentrate on informational differences, as Grossman and Stiglitz (1980), that ana-
lyze the impact of learning, as Barsky and De Long (1993), and that investigate the interaction of
agents who are using different predictor schemes or different strategies, as Brock and Hommes
(1998). A first result of theoretical relevance is presented in Section 3. There we extend GS’s
results and show that a price “dynamic equilibrium degree of disequilibrium” can be achieved in
a multi-period market populated with boundedly rational agents. A second result is given in Sec-
tion 4, where we show that informational differences in a market with boundedly rational agents
also have interesting empirical implications. Our framework provides insights into a number of
econometric models which have recently been introduced to justify financial anomalies such as
mean reversion and return predictability by assuming that the stock price is the sum of a persis-
tent and a of temporary component. In our framework, the persistent component can be directly
linked to the dividend process whereas the temporary component can be related to agents’ learn-
ing of the dividend growth rate and to the agents’ attempt to extract information from prices. In
particular this second effect shows how a time-varying coefficient of the temporary component,
and thus nonlinear mean reversion, can be explained.

Appendix

A Equilibrium price equation
This appendix provides a micro-foundation of the equilibrium price equation (2.4). Consider
a group of agents choosing at every time � whether to invest in a risk free asset, whose single
period return is

<�ý
, or to invest in a risky asset, whose single period return rate,

< �:9B� , depends on
dividend payed at time � �M�

, ���:9B� , and on the price (or remaining value) of the asset at time � �M�
,�]�:9B� : < �:9B�l� �]�:9B� � ���:9B� ^ ����]� @ (A.1)

At every time � , we assume that each agent maximizes a CRRA mean variance utility function
in order to decide which fraction � � of his wealth to invest in the risky asset. The CRRA utility
function to be maximized isPú� � � � �a0Y� � � � < �:9B� � � �b^ � � � <�ý���^aþ �}ÿ � � � � < �:9B� � !
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where 0b� and ÿ � denote, respectively, the mean and the variance conditional on the information
available at time � and þ is the coefficient of risk aversion which we assume constant across
agents. Assume also that for each agent ÿ �r� < �:9B� � �á# $ . The solution of the maximization ofPú� � � � gives: � ��� 0b� � < �:9B� ^j<�ý��þ # $ ! (A.2)

as the fraction of wealth to be invested at time � . Consider now the case where assumptions�cd �l^ �ed�/ � of Section 2 hold. Since informed and uninformed agents have different information,
they have different 0b� � < �:9B� � and therefore different demands for risky assets. Call � G� ( � V� ) and

� G� ( � V� ), respectively, the fraction of wealth to be invested at time � and the wealth at time � of
the informed (uninformed) agent. Assume a net positive supply of shares S|� and call �]� the price
of each share at time � . The Walrasian equilibrium equation at time � is given by:S��¾�]��� � G� � G� � � V� � V� @ (A.3)

Now, define ��� as the fraction of wealth, or market power, of the informed agents at time � . This
implies �]�4� � G� t � � with � �4� � G� � � V� . Call

� � the average proportion, at time � , of wealth
invested in the risky assets, i.e.

� ���oS�� �]� t � � . The Walrasian equilibrium equation (A.3) becomes
� ������� � G� � � �4^ �]� � � V� !

which, given the expression for � in (A.2) and rearranging terms, becomes<�ý�� � � þ # $ �a���e0 � < �:9B� Ò , G� �*� � �4^ ��� � 0Í� < �:9B� Ò , V� � ! (A.4)

where the informed and uniformed agents condition their expectations of the return of the risky
asset on different information sets. Eq. (A.4) shows that

� � is related to the weighted average of
the risk premium required by the community of traders to hold the asset.

If we assume that both informed and uninformed agents are fundamentalists, their expecta-
tions of the future price is equal to the discounted sum of all future dividends, i.e., as specified in
equation (2.1), 0�� �]�:9B� Ò , -� � �1/ -�:9B� �a0 2435 687 � ���:9B�f9 6� �;�U<D� 6 === , -�?>À@
for the general information set , -� . This implies that the informed agents use:0Í� < �:9B� Ò , G� � � ���:9B�W� �;�U<D�� <m^q� ) � ��� ^�� ! (A.5)

whereas the uninformed agents use:0Í� < �:9B� Ò , V� � � ���°\ )�:9B� � ���U<D�� <m^n� ) � ��� ^�� @ (A.6)

As a result the equilibrium equation (A.4) becomes:�]� �;�U<�ý�� � � þ # $�;�U< �o�]� ���:9B�� <'^n� ) � � � �b^ �]� � ���°\ )�:9B�� <'^q� ) � @ (A.7)
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At this point, by fixing
<m^j<�ý � � � þ # $ , that is by imposing that the asset excess return required

by the agents, which is an exogenous variable of the model, is equal to the endogenous variable� � þ # $ , we get Eq. (2.4) which solved for ��� gives Eq. (2.10).
By fixing

<m^�<�ý � � � þ #�$ we are implicitly assuming that the endogenous expected equilib-
rium return of our model is given by the exogenous parameter

<
. In fact, when the price is infor-

mationally efficient, the resulting expected and realized dividend yield are equal to \ p � <Ý^��)
so that using Eq. (A.6), or equivalently (A.5), to compute the expected equilibrium asset return
we get: 0Í� < �:9B� Ò , V� � �10Í� < �:9B� Ò , G� � � \ ) � ���U<D�� <'^n� ) � ^�� � < @
In order to derive the asset return,

< � , endogenously as a function of the exogenous parameters<�ý
, # $ , þ , S�� and of the discount rate

<
, one should solve the equilibrium price equation (A.7),

without fixing Si�¾�]� t � � proportional to
<'^j<�ý

. Levy et al. (1994) are, to our knowledge, the first
to perform this kind of analysis. They use computer simulations to investigate the evolution of
wealth and prices in an asset market where, as in our framework, agents are using CRRA utility
function and the underlying dividend process follows a geometric random walk. In a recent
paper Anufriev and Dindo (2006) offer analytic support of their simulations. In the present paper,
having assumed that 0b�r� < �:9B� � � <

, we are fixing the long run asset return and we concentrate on
the properties of the fluctuations induced by agents interaction around this long run level.

B Agents fractions dynamics
The micro-foundation of the price equilibrium price equation (A.7) offers an appealing interpre-
tation of ��� as the fraction of wealth of the informed agents, and a natural way to endogenize its
evolution. In fact the wealth fraction at time � , �R� , is endogenously determined as a function of
the fraction at time � ^n�

, ������� , the fraction of wealth invested in the risky asset by both agents at
time � , � G����� and � V����� , and of the return of the market at time � , < � in (A.1). Using the definition
of the fraction of wealth of the informed agent �R��� � G� t � � G� � � V� �

and wealth evolution

� -� � � -����� � �;��<�ý��%� � -����� � < � ^j<�ý�� � -����� for +��1E�!WP
one can easily derive the equation that governs the evolution of the fraction of wealth of the
informed agents ��� : �]�%� �]�������w� ����<�ý��%� � G� �� �;�U<�ý��%� �������"� G� � � �b^ ������� � � V� ! (B.1)

where � G� �s� < � ^n<�ý�� � G����� ! (B.2)

and � V� �¦� < � ^j<�ý�� � V����� ! (B.3)

are the realized excess profit per unit of wealth for informed and for uninformed agents respec-
tively. When the realized single period return of the asset

< �:9B� is higher than
<�ý

if the informed
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agents invests a higher (lower) share of their wealth compared to the share of uninformed agents,
their fraction of wealth increases (decreases) compared to the fraction of wealth of the unin-
formed agents. Equation (B.1) corresponds to the replicator dynamics equation given in Eq.
(2.24) when

¢ �ÉN and when
£ � ���Z<�ý

. To obtain (2.25) one has to further assume that (2.21)
and (2.22) can be used as proxies of the realized profits per unit of wealth for respectively the
informed agent, as (B.2), and for the uninformed agent, as (B.3). In fact one has to assume that
the dynamics of the fractions is driven by the forecasting error of the uninformed compared to
the cost of information for the informed, rather than by their realized profits. Investigation of
this second framework would lead to a more complicated system due to the presence of

< � , and
thus of both \D� and �]� t �]����� , in the expression of agents’ profits. To conclude the correspondence
between Eq. (B.1) and Eq. (2.24) or Eq. (2.25) we have to discuss the case

¢�¿� N . Assume
that, in every period, a number of agents which holds a fraction

¢
of total agents’ wealth exits the

market and is replaced by new agents with the same amount of wealth. Also assume that these
new agents split evenly between being informed and being uninformed. This would mean that at
period � the total fraction of informed agents is given by:�]�%�s� �b^�¢|� ���������r� �;�U<�ý��%� � G� �� ����<�ý��%� �]�����[� G� � � �Y^ �]����� � � V� � ¢� ! (B.4)

which, with
�Y�Z<�ý � £

, is as (2.24) in Subsection 2.3 for every
¢ ����N�! ��� . Notice that irrespec-

tively of the fitness measure, realized profits or forecasting errors, both expressions (2.25) and
(B.4) for the fraction of informed agents �R� have the same dependence on the previous fraction
of informed agents ������� .
C Proofs
Proof of Proposition 1 Given the linear difference equation in (3.3), that is\ )� � <m^n�� � � � � ^��� \ )����� !
and the initial condition \ Æ , from the theory of linear systems follows that\ )� �¦�c\ )Æ ^ � <m^n���w� � � � � ^��� � � � � <m^q��� @
is the unique solution. The solution converges to \ p � <Y^ �

as long as ��Lo� ��^ � � t � otherwise
it diverges to ÊuË . �

Proof of Proposition 2 Solving for the fixed point of (3.1-3.2) leads to \ p � <x^��
and to � p

solution of the following second order equationK�� $ � �fK ¢ t � ^ K ^�¢�£� � �U¢�£ t �?�aN*!
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which can be shown to have two real roots. Take �n���cN�! ��� , ¢ ���cN�! ��� and ÌÀ� £ t KmL �
. From:� ^�¢Y� �DÌ ¢'^�� L�N�!

it follows that � ^�¢Y� ��Ì ¢Y� Î ��� ^�¢Y� ��Ì ¢|� $ ^�Ï Ì ¢Ð L � @
That is one real root is always larger then

�
and thus not in the co-domain of our state variable � .

The other solution can be shown to be always in the interval ��N�! � t � � . In factN y � p � � ^�¢Y� ��Ì ¢'^ Î ��� ^�¢Y� ��Ì ¢|� $ ^�Ï Ì ¢Ð y �� !
reduces to N y�Ï Ì ¢ and

^ Ð � �b^j¢D��y N @
Both inequalities ara always satisfied. The Jacobian follows from evaluating the derivatives of
(3.1-3.2) at the fixed point �c\ p !g� p � . For the stability condition notice that the matrix is diagonal
and the second eigenvalue, è $ ���fN�! ��� . In fact since

¢úya�
, ÌÍL � L�N @ âúL(� p one has:N y è $ �¡� �b^�¢|� Ì��fÌ ^�����fÌ ^ � p � $ y Ì���Ì ^����Ì���Ì ^����%� �fN @ â � $ yo� @ (C.1)

The value of the first eigenvalue, è�� , depends upon the value of � p . This eigenvalue is the same
as the linear coefficient of equation (2.18), that is, it is è� y¦�

given ���(�cN�! ��� and �Rpu�1�cN�! ���
and è���L ^x�

as long as � p L � �b^ � �� @
Given the value of � p one can check that the previous inequality is satisfied if and only if¢ L � ��� � ��;� $"Ù�Úµ �"� Ù · @

�

Proof of Proposition 3 The matrix
Ñ�Ò µ¶¨ © F ± © · in (3.6) is diagonal. As a result the dynamics of\ and � around �c\ p !g� p � can be linearized along the orthogonal basis with eigenvalues given by

the diagonal entries of the matrix. Thus the eigenvalues that governs the dynamics of � , (C.1), is
given by the entry ���*!g� � of the matrix (3.6). We recall from the previous proof thatè $ �¦� �b^j¢D� Ì`��Ì ^������Ì ^ � p � $ !
and we have already shown that è $ yo�

. The lower bound, è $ L�� �b^�¢D� � �b^�� t Ì � , follows from
the previous expression and � p L�N for all

¢ L�N and for all � . �
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