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1. Introduction 
 
At the Lisbon Summit in 2000 the governments of the European Union (EU) agreed on the goal 

of the EU to become by 2010 “the most competitive and dynamic knowledge-based economy in 

the world, capable of sustainable economic growth with more and better jobs and greater social 

cohesion”.1 This overall goal of the ‘Lisbon process’ has been embedded in a set of policy 

guidelines that include the following elements: 

• Preparing the transition to a knowledge-based economy through better polices for the 

information society and R&D;  

• Stepping up the process of structural reform for competitiveness and innovation and 

completion of the single market;  

• Combating social exclusion and modernizing the European social model by investing in 

people;  

• Sustaining the healthy economic outlook and favourable growth prospects by continuing 

with an appropriate macroeconomic policy mix and improving the quality of public 

finance. 

 

To realise these goals, the review of the Lisbon process at the Barcelona Summit in 2002 has 

explicitly emphasized the importance of Research and Development (R&D). 2 One of its main 

recommendations calls for an increase in European R&D expenditure with the target to reach 3% 

of European GDP by 2010, two thirds of this to take the form of business R&D.3 The main 

argument behind this target appears to be the concern that even if in the EU knowledge-intensive 

industries have been partially successful in creating employment over the last decade, productivity 

developments have been far less favourable (especially if measured against the US). This 

underperformance is seen as a threat for European competitiveness and economic growth in 

general and, more specifically, for the achievement of the Lisbon goals and for the growth of 

national incomes and living standards. A related concern is the fact that the EU performs 

                                                 
1 Presidency Conclusions, Lisbon European Council, 23 and 24 March 2002, para. 5. 
2 For a broader description and a general assessment of the other goals of the Lisbon process see Dierx and Ilzkovitz  
(2006). 
3 Cf. Presidency Conclusions, Barcelona European Council, 15 and 16 March 2002 para. 47. For a review of the 
progress of the Lisbon process up to then see The Lisbon Strategy. Making Change Happen, Communication from the 
Commission to the Spring European Council in Barcelona, COM(2002) 14 final, 15.1.2002. 
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relatively low in input (business R&D) and output indicators (such as patents) of innovative 

activity. Public policy, with the aim to promote investment in business R&D, is therefore seen as 

a key measure to prevent long-term economic decline (European Commission, 2002, Economic 

Policy Committee, 2002).4 

 

In a recent paper (Meister and Verspagen, 2006) we simulated and projected the productivity 

effects of increased R&D in European manufacturing industries. In our analysis, we took into 

account not only the direct effect of R&D carried out in a specific sector but also included 

indirect R&D embodied in intermediate inputs (from both ‚home‘ suppliers and imports, which 

included the United States) – for the concept of spillovers see more in the following section. Our 

results suggest that raising overall European R&D benefits European productivity in many sectors 

but that it is not a complete solution to the productivity backlog relative to the U.S. We also ran 

a series of thought-experiments where we targeted specific only. We could show the already 

‘leading edge’ of European sectors gains relatively much as a result of a targeted high-tech 

impulse. More striking, however, we found that the most dramatic impacts may be expected from 

raising R&D in so-called low-tech sectors. Surprising that may be, still, this is in line with the 

analysis by Sandven et al. (2005), which stresses the persistent importance of low-tech and 

medium low-tech sectors in manufacturing output and employment in the OECD economies. 

 

However, what we miss in our analysis is a further examination of these trade-related spillovers. 

Especially, it is interesting to see how they propagate in the trade network. A better 

understanding of this propagation helps to address several issues with policy implications. Both 

‘Qualitative Input-Output Analysis’ as well as ‘Minimal Flow Analysis’ provide instruments for 

such a structural analysis. Unfortunately, they trade off structuration gains with a loss of 

information. The paper argues therefore for a modified approach, which uses quantitative 

information, as a starting point. It starts with a short discussion on the link between R&D and 

spillovers. Section 3 presents an overview of existing approaches to multisector and multicountry 

analysis. After a summary of our data, section 5 provides and discusses the results from our 

analysis. A conclusion sums up the main findings and gives perspectives for further research. 

                                                 
4 See also Productivity. The Key to Competitiveness of European Economies and Enterprises, Communication from the 
Commission to the Council and the European Parliament COM(2002) 262 final, 21.05.2002. 
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2. R&D and spillovers 
 
Economic theorists have accepted the positive link between technological change, productivity 

and economic growth for a long time. Process innovation provides opportunities for cost 

reduction. Product innovation enhances either the range of available intermediate inputs for the 

production process, increasing real output, or increases the availability of consumer products with 

corresponding welfare gains. Indeed, in modern economies, the inputs of capital and labour alone 

cannot account for a large part of output growth in modern economies (Solow, 1957). The 

concept of ‘total factor productivity’ (TFP) has been widely used as a measure to explain this 

residual (see Nadiri, 1970).  

 
In a rich empirical tradition of work on productivity growth (e.g., Griliches, 1979), the total 

factor productivity residual has been related to the accumulation of a ‘knowledge stock’, which is 

not accounted for in the measurement of the conventional capital stock but increases output via 

innovation and technological change. R&D expenditures have been suggested as a way of 

measuring this knowledge stock, and this has led to a range of works relating R&D expenditures 

to total factor productivity growth. This is consistent with the notion in ‘new growth theory’ of 

non-convexities of R&D and knowledge in output, which results in self-sustaining growth (as in 

Romer, 1986, 1990).  

 
An important issue in this literature is the idea that R&D not only provides productivity benefits 

for the firms that undertake it, but also for other firms in similar or somehow related lines of 

business. This is the notion of R&D spillovers, indicating that the impact of innovation and 

technology is felt widely rather than being a private pay-off. In this context, Griliches (1979, 

1993) pointed to the distinction between knowledge and rent spillovers. Pure ‘knowledge 

spillovers’ are externalities arising from the public goods characteristics of technology and research 

without the need to engage in economic transactions. These externalities can arise from learning, 

observation and copying such as ‘reverse engineering’ and ‘patenting around’. Other transmission 

channels result from formal and informal contacts and networks of scientists, professionals, 

clients and customers, which go beyond market transactions (Mansfield, 1985). Rent spillovers, 
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on the other hand, are defined by a shift of innovation rents from the producer to the user of a 

certain technology due to competitive market pressures. From the perspective of the whole 

economy, this constitutes an unwanted measurement error in attributing productivity increases to 

the wrong entity and can in principle corrected by using adjusted output deflators (Triplett, 

1996). Yet for an individual firm, industry or country, such effects result in real benefits with 

corresponding productivity increases. 

 
Empirically, however, both notions are somewhat difficult to separate, as market interaction can 

facilitate the exchange of technological knowledge. To reflect the different mechanisms of 

spillover transmission and absorption the empirical literature uses basically three different 

weighting schemes to aggregate a stock of indirect, spillover-related R&D. Tansaction-based 

weights emphasise to some extent the rent spillover component. Usually these are derived from 

interindustry sales (e.g. van Meijl, 1995), investment flows (e.g. Sveikauskas, 1981) or from a full 

input-output framework (e.g. Terleckyj, 1974, 1982, Wolf and Nadiri, 1993 or Sakurai et al., 

1996). In contrast, weighting by technological distance measures accounts for the fact that the 

absorption of knowledge spillovers is mediated by the technological proximity between receiver 

and transmitter. Such distance may be measured by the type of performed R&D (Goto and 

Suzuki, 1989), the qualifications of researchers (Adams, 1990), the distribution of patents 

between patent classes (Jaffe, 1986) or patent classifications and citations (Verspagen, 1997a,b). 

Technology flow matrices in a sense combine the two concepts of technological and ‘market’ 

proximity by identifying originators and (potential) users of a technology or an innovation. 

Scherer’s user-producer matrix as well as the Yale matrix have been derived from patent statistics 

(Scherer, 1982, Putnam and Evenson, 1994). Many empirical studies have found indeed a 

relatively high influence of R&D and related spillovers to productivity growth but the results 

depend in some measure on the construction of the spillover variable.5  

 
The findings that market transactions and technological closeness matter for productivity imply 

an extension of any meaningful empirical analysis to the global level, at least to the major trading 

partners. There is no a priori reason why international spillovers should be modelled differently 

than domestic spillovers. The total technology content of a product or a sector that matters for 

                                                 
5 See Cincera and van Pottelsberghe, 2001, Mohnen, 2002, and Los and Verspagen, 2003, for recent in-depth 
reviews of the empirical spillover literature. 



 5

productivity contains the R&D performed by itself as well as the technology acquired by inputs 

from both domestic and foreign sources. For that reason, besides the more static advantages of 

getting an expanded set of inputs at lower cost (including frontier-technology), international 

trade is an important source for long-term development and catching-up (Fagerberg, 1987, 

Abramovitz, 1986). Especially small open economies can benefit disproportionately from 

international spillovers, not only in a development context (Coe et al., 2002) but also amongst 

developed countries as shown by Coe and Helpman (1995). In fact it may be argued that the 

potential of the global R&D stock for catching-up should be relatively high for developed 

economies that already have a high level of absorptive capacities and would yield comparatively 

marginal benefits from investment in education and other social capabilities (Archibughi and 

Mitchie, 1998).  

 

3. Approaches to multisector and multicountry analysis 
 

Traditional IO analysis 
 

Most of the input-output literature phrases multisector analyses in terms of systems of multiple 

simultaneous equations (cf. the original work by Leontief, 1936, 1941 or the classic textbooks by 

Miller and Blair 1985, Schnabl and Holub, 1994 and Schumann, 1968).  The basic IO table, as 

shown in figure 1, consists of three matrices and two vectors. The upper-left quadrant contains 

the supplying relations between the n sectors of production in the intermediate matrix Z. Final 

demand Y on the right contains the domestic components of consumption, investment etc. as 

well as (net) exports6. Fa in the lower-left quadrant includes primary inputs like (different types 

of) labour, indirect taxes and other components of value added. The elements of the two output 

vectors (i.e. row and column sums) have to be equal for the same sector (that is, xi = xj  for i = j). 

 
 

                                                 
6 If, like in the example table, imports are included as inputs final demand contains total exports. Else imports enter 
final demand in a negative fashion and contribute to net exports.  
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Figure 1 Basic IO table. 

 
By dividing the elements the intermediary relations by output values one obtains coefficients, 

which describe the technology of production. Depending on the goal of the analysis, one divides 

either by row sums to get output coefficients /ij ij iz x=ω
 
or input coefficients, divided by 

column sums, /ij ij ja z x= . Especially the latter has been important in the literature – as this 

coefficient gives the increase in the output of sector i that is necessary produce an additional unit 

of good j for final demand. The magnitude of effects in the total economy, which are induced by 

changes of final demand, is therefore calculated by means of the so-called Leontief inverse, 

1( )−=x I - A y . 

 
From the coefficients it is also possible to identify key sectors which have strong backward and 

forward linkages in the economy (cf. Rasmussen, 1956, Chenery and Watanabe, 1958; for 

surveys: Sonis et al., 1995, Dietzenbacher, 2002). The hypothetical extraction method (HEM) is 

a related yet alternative approach. Basically, it calculates the effects of a sector’s hypothetical 

elimination from the economy (cf. Miller and Lahr, 2001, Los, 2004). 

 
Several studies have linked input-output with innovation indicators to analyse technology flows. 

DeBresson et al. (1994) and the contributions in DeBresson (1996) connect it with R&D 

expenditure to analyse Italy and other countries. Leoncini et al. (1996) link it with R&D 

employment data to follow technology flows in Germany and Italy. Drejer (1999) links patents 

and qualifications of (R&D) personal for the Danish economy. The literature of spillover studies 

using input-output weights has already been mentioned in section two above. 
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Network approaches 
 

Essentially, any network approach is an application of mathematical graph theory (Busacker and 

Saaty, 1965). Both fields use, however, a slightly different terminology. Network theory speaks of 

‘nodes’ and ‘ties’, graph theory speaks of ‘vertices’ and connecting ‘edges’. A directed edge is an 

‘arc’. While the early theory of networks was developed by mathematicians and social scientists 

alike, more recent developments were carried out by physicists (Barabási 2002, Buchanan 2002, 

Watts 2003).  Links can be represented in graphs, in a list of ties between nodes or – condensed 

from the latter – in an adjacency matrix. Given that the intermediate matrix of the IO table 

represents effectively such an adjacency matrix, it is somewhat surprising that IO analysis rarely 

resorts to network analytical methods. When doing a literature search we found with Kali and 

Reyes (2004) only one (and indeed as yet unpublished) paper by economists, which explicitly 

depicts trade relations in network categories. 

 
On the other hand, the discipline of sociology provides an increasing body of literature, which 

does just that. It seems that the development of Social Network Analysis by quantitative 

sociologists (cf. Scott, 1991, Faust and Wasserman, 1994) provided a methodological toolbox for 

sociologists interested in international political relations and political economy, which has been 

largely neglected by economists.7 Much of this literature – starting from the work of Snyder and 

Kick (1979) – has been based on Wallerstein (1974).  Many analyses therefore use trade as one 

dimension to detect centre-periphery structures in the world system (e.g. Smith and White, 1988, 

1992). Others look at globalisation (Krempel and Plümper, 1998, for the motor car sector and 

Sacks et al., 2001, and Kim and Shin, 2002, with a more general perspective). A third stream 

examines processes of transition as in the East and central European countries (e.g. Krempel et al., 

2001). 

Qualitative IO Analysis 
 

Building explicitly on graph theory, Czayka (1972) developed with the so-called ‘qualitative 

input-output analysis’ (QUIOA) a branch of IO economics, which has been useful to visualise 

                                                 
7 Interestingly, business economists interested in organisational issues have been well-aware of network provided by 
Granovetter and others. And there is, of course, a vast literature on network industries as well as on network 
externalities. 
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economic structures. In order to extract important economic linkages QIOA binarises the 

available IO data. Coefficents or values below a cut-off filter threshold are set to zero; these above 

are set to one. By exponentiating this binarised adjacency matrix data Czayka calculates linkage 

matrices for different path lengths. Boolean addition of the latter results in a dependency matrix 

for a given path length. Here, elements are set to one if the sectors are connected to each other, 

either directly or via intermediary steps. Evaluating these decencies according to the different 

types of connections (isolated, unilateral linkage and bilateral linkage) Czayka calculates a 

connectivity matrix, which is the starting point for further analysis. By condensing strongly 

connected sectors into groups and by establishing ‘source’ and ‘sink’ sectors QIOA is able to 

recommend an efficient business cycle policy. It helps to choose a group of sectors which has a 

relatively small ‘input dispersion’ to other sectors. By applying a typology of linkages, Czayka is 

even able to recommend “optimal investment sequences” (ibid.: ch. 5). Jagrič (2004) provides an 

application with Slovenian data. 

 

The problem with QIOA is clearly the choice of the threshold filter. As a rule of thumb Holub 

and Schnabl (1994) suggest to set the filter to three times the average transaction value between 

sectors. For intertemporal analyses Jagrič (2004) proposes to change the filter so that the number 

of important intermediate flows stays constant over time. Still, the choice is somewhat arbitrary 

and differing filters lead to different results (Kleine and Meyer, 1982). 

 

‘Minimal Flow Analysis’ (MFA) was partially developed in response to this criticism. As a more 

refined rule, Schnabl (1994, 2000, see also Schnabl et al., 1985) calculates connectivity matrices 

for a set of filter values. These are multiplied and the average is then used for further analysis. In 

addition, MFA takes into account not only direct linkages like QIOA bit also second- on other 

higher-round linkages. MFA has successfully employed for the study of national as well as 

regional economies (e.g. Ghosh and Roy, 1998, for India and Schnabl, 1996, for Baden-

Württemberg).  Still, even with a refined methodology, MFA relies on binarised data, with the 

implication of a loss of information from the original available data. 
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4. Data and methodology 
 
As nodes in the network we have France, Germany, Great Britain and the US. Japan will be 

included at a later stage. We focus on the manufacturing industry only, which we subdivide into 

22 sectors, documented in table 1. The sources of the data are the OECD STAN family of 

databases as well as the OECD Input-Output database. The newest version of the STAN 

database, using the ISIC rev. 3 classification, covers the period 1980 – 1999, while the older 

version of it, using the ISIC rev. 2 classification covers the period 1970 – 1994. Merging these 

editions and accounting for the different classification schemes we obtain a dataset that covers the 

period of 1973-1999.  

 

Table 1 Sectors in the analysis. 

ISIC rev.2 ISIC rev.2  
15-16 31 Food products, beverages and tobacco 
17-19 32 Textiles, textile products, leather and footwear 
20 33 Wood and products of wood and cork 
21-22 34 Pulp, paper, paper products, printing and publishing 
23 353+354 Coke, refined petroleum products and nuclear fuel 
24ex2423 351+352ex3522 Chemicals excluding pharmaceuticals 
2423 3522 Pharmaceuticals  
25 355+356 Rubber and plastics products 
26 36 Other non-metallic mineral products 
271+2731 371 Iron and steel 
272+2732 372 Non-ferrous metals 
28 381 Fabricated metal products, except machinery and equipment 
29 382ex3825 Machinery and equipment, nec 
30 3825 Office, accounting and computing machinery 
31 383-3832 Electrical machinery and apparatus, nec 
32 3832 Radio, television and communication equipment 
33 385 Medical, precision and optical instruments 
34 3843 Motor vehicles, trailers and semi-trailers 
351 3841 Building and repairing of ships and boats 
353 3845 Aircraft and spacecraft 
352+359 3842+3844+3849 Other transport 
36 39 Other manufacturing 

 
 

The linking ties are embodied R&D flows. To construct these we get from STAN data for 

sectoral output, sectoral R&D expenditures as well as bilateral trade flows. The constraining 

factor is the IO data, which is available for a couple of years only, as given in table 2. Because of 

that we do not construct complete time series but snapshots for the early 1980s, the mid-1980s 
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and the early 1990s. Data for the mid- and late-1990s will be constructed later from the ‘new’ 

OECD IO database. On the plus side, OECD provides separate domestic and imported 

transaction tables which reference to the potential different use of domestic and imported goods. 

From the flow data we take 5-year averages around these ‘IO years’. 

 

Table 2 Countries in the analysis, available IO data. 

  early 80s mid-80s early 90s mid-90s late-90s 
France 1980 1985 1990 1995 
Germany 1978 1986 1990 1995 
Great Britain 1979 1984 1990 1995 
Italy 1985 1998 
USA 1977 1985 1990 1997 
(Japan) 1980 1985 1990 1995 1997 

 
 

In constructing embodied R&D flows we follow in line with most spillover studies since 

Terleckyj (1974). Sectoral R&D stocks are constructed by applying the perpetual inventory 

method, that is 

 1(1 )t t tRD RD RE−= − +ψ   

with RE being R&D expenditure, the depreciation rate ψ set to 0.15 and an initial capital stock 

of 5 times REt+1 (assuming an initial growth rate of 5 per cent). 

 
In order to to attribute the share of R&D undertaken by the supplying sector i to the using 

industry j’s technology stock we weigh with ijω from the IO tables, i.e. the output coefficients, 

obtained by dividing the cell values through by the corresponding row sums – both from the 

domestic and imported tables,  

/ij ij iz x=ω
  

The common idea behind this method is that the ‘statistical benefit’ industries obtain 
through R&D embodied in intermediate goods is proportional to the parts of the output of 
the innovating industry they buy, through rent spillovers. (Los, 2000) 

 
 
Hence for indirect domestic R&D, we divide the supplier’s R&D stock by its output to get 

intensities and weigh by trade flows and ‘domestic’ IO coefficients, 

ij ij

idom dom
ij

i

RDRD z
x

= ω  
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For indirect imported R&D from country k, we divide the supplier’s R&D stock by its output (in 

the exporting country) to get intensities and weigh by bilateral trade mkm flows and ‘imported’ IO 

coefficients, 

ij ij

k
imp km impi

ijk
i

RDRD m
x

= ω  

 
 
 

5. The R&D-trade network 
 

Overview 
 

As result we get a 110x100 adjacency matrix of intra- and inter-country R&D flows; 5 countries 

with 22 sectors (table 3). 

Table 3 Adjaceny matrix of R&D flows. 

  FRA GBR GER ITA USA 
FRA         
GBR         
GER         
ITA         
USA           

 
 

Figure 2 presents snapshots of the network on the left-hand side generated by the social network 

analysis package UCINET (Borgatti et al., 2002). It uses a spring-embedding layout, where the 

nodes repel each other and the ties, according to their strength, hold the network together. 

Therefore, ‘outliers’ have relatively weak ties. With some minor differences (i.e. US ‘other 

manufacturing’ is an outlier only in 1985), these pictures do not reveal much dissimilarity. To 

reveal more details, the right-hand side display different ‘layers’ of the 1980 network. Obviously, 

US sectors are grouped much closer together than European sectors. Especially interesting is the 

strong link between 3825 – computers etc. – and 3832 – telecommunications.  

 
This finding is confirmed in figure 3, which orders the 1980 and 1990 network nodes according 

to a three-dimensional multi-dimensional scaling algorithm (Kruskal and Wish, 1978). In short,  
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Figure 2 Snapshots of the R&D-trade network. 
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Figure 3 Multi-dimensional scaling: 1980, 1980 turned, 1990. 
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MDS projects multi-dimensional distances in a lower-dimensional space, while trying to keep the 

ordering of components intact. Again, American sectors are close together, European sectors are 

dispersed. This is not an illusion of the three-dimensional representation in a two-dimensional 

space.  A rotation of the image endorses this suggestion (picture in the middle). A comparison of 

1980 and 1990 networks (upper and lower picture) seems to propose that the later network has 

become more compact – nodes have moved closer to each other. 

 
To answer such questions of the overall network structure as well as of the position of individual 

nodes, social network analysts have developed a plethora of indicators (cf. Scott, 1991, Faust and 

Wasserman, 1994).  Amongst others, measures of density set the realised number of linkages in 

relation to the potential maximum of linkages possible within the total network. Indegree and 

outdegree measure the incoming or outgoing linkages of a specific node or give averages for the 

network. Measures of reach count the accessibility between nodes, both via direct and indirect 

linkages. They can be refined into measures of centrality, influence or power. It is possible to 

identify sets of nodes which are tied more closely than others. Combining these indicators has 

yielded insights on the position and role of specific nodes in the networks as well as on 

comparative network dynamics (Freeman, 1979).  Unfortunately, most indicators have been 

developed for binary networks only and are not applicable for valued graphs. We therefore 

propose to use the ‘maximum flow’ as a measure for connectivity and  ‘flow betweeness’ for 

centrality. 

 

Maximum flow and connectivity 
 

Issues of flow arise in many directed and valued networks. For instance, in a network of pipes the 

directed weights can be reinterpreted as capacities of pipes between the individual nodes. Flows in 

such networks are bounded by two requirements: First, the flow on each tie cannot outrun the 

tie’s capacity. That is, a flow is constrained by bottlenecks in the networks. Second, with the 

exception of source and sink nodes, the incoming flow has to equal the outgoing flow in each 

node. The ‘maximum flow’ between two nodes is thus defined as the flow with the highest 

possible value amongst all potential flows between them. The example in figure 4 represents a 

small valued and directed network with one source, one intermediate and two sink nodes. It has 
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thus five possible maximum flows; i.e. 1.2 10= , 1.3 8= , 1.4 10= , 2.3 8=  and 2.4 15= . For 

more complex problems Ford and Fulkerson (1956) provided a first efficient algorithm.   

 

 

 
Figure 4 Example flow network. 

 
 

We use the network analysis package Netminer (Cyram Ltd., 2003) to calculate pairwise 

maximum flow values between all nodes in our network. The maximum flow matrices for the 

early 1980s, mid-1980s and early 1990s are given in the appendix. Rank order correlations show 

strong association between adjacent ‘periods’, but more structural change between the early 1980s 

and early 1990s. 

Table 4 Rank order correlations. 

 mid-1980s early 1990s 
early 1980s 0.95 0.87 
mid-1980s  0.92 

 
 
Given that the maximum flow between two nodes is a weighed measure for their connectivity we 

propose to replace the binary connectivity matrix of the QIOA approach with maximum flow 

matrices and use it for further analysis. 
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6. Conclusion and outlook 
 
In this paper we have suggested a network approach to the analysis of R&D embodied in trade 

flows. Unlike traditional spillover analysis, which focuses only on the nodes of that network, we 

think that such an approach can yield additional insights. Social network analysis has developed 

an impressive toolbox of indicators. Unfortunately, most of these have been developed for binary 

network data only. Also ‘qualitative input-output analysis’ and ‘minimal flow analysis’ binarise 

the available flow data and incur therefore necessarily a loss of information. On the other hand, 

they provide a powerful body for structural analysis. For that reason we propose to use the 

quantitative information contained in maximum flow matrices as a starting point and combine 

these with the further steps of QIOA and MFA. 

 
We demonstrated some first analyses with data covering the manufacturing sectors of the four 

biggest European economies as well as the US and for three snapshots from 1980 to 1990. We 

will extend this further in time. In a second step, a further integration with QIOA and MFA will 

yield measures of distance and influence between sectors, which are expected to shed more lights 

on the issue of targeted and broad effects of policy-induced R&D impulses.   
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